Optimized production of antibacterial copper oxide nanoparticles in a microwave-assisted synthesis reaction using response surface methodology

Author(s):  
Shishir V. Kumar ◽  
Adarsh P. Bafana ◽  
Prasad Pawar ◽  
Meghana Faltane ◽  
Ashiqur Rahman ◽  
...  
2020 ◽  
pp. 129686
Author(s):  
Somayeh Rahdar ◽  
Kaushik Pal ◽  
Leili Mohammadi ◽  
Abbas Rahdar ◽  
Yassman Goharniya ◽  
...  

2020 ◽  
Vol 11 (3) ◽  
pp. 10027-10039

The current study focusses on the optimization of Copper oxide nanoparticles (CuO NPs) biosynthesis with Alternanthera sessilis (L.) extract using response surface methodology (RSM). The effect of time, pH, and extract to metal concentration ratio on the yield of synthesized nanoparticles (NPs) were estimated using Box–Behnken design. The influence of each of the parameters, as mentioned earlier, was determined by synthesizing nanoparticles under different conditions. A total of 29 experimental runs were carried out to estimate the crucial parameters. Extract to the metal ratio was found to be the vital parameter for yield optimization based on the p-values (p-value < 0.05). The physicochemical property of NPs, like size, was estimated to be in the range of 10-20 nm. In zebrafish, 48 hpf and 72 hpf were measured at 90 µM to reduce dysfunction and mortality during organ development. These results can have a valuable impact on eco-toxicological effects.


Sign in / Sign up

Export Citation Format

Share Document