Nanoencapsulated n-tetradecane phase change materials with melamine–urea–formaldehyde–TiO2 hybrid shell for cold energy storage

Author(s):  
Jinghang Wang ◽  
Xinyu Zhai ◽  
Zunrui Zhong ◽  
Xinwen Zhang ◽  
Hao Peng
2021 ◽  
Vol 163 ◽  
pp. 198-212
Author(s):  
Efstratios Varvagiannis ◽  
Antonios Charalampidis ◽  
Gabriel Zsembinszki ◽  
Sotirios Karellas ◽  
Luisa F. Cabeza

2020 ◽  
Vol 26 (3) ◽  
pp. 300-307
Author(s):  
Yuan LIU ◽  
Yanghua CHEN

A novel form-stable composite phase change materials for cold energy storage were prepared using physical blending adsorption method. In the shape-stabilized composites, lauryl alcohol (LA) and caprylic acid (CA) were employed as phase change materials, which were blended together at specific mass ratio based on theoretical calculations. Activated charcoal (AC) was selected as supporting material due to its advantages like large specific surface area and high thermal conductivity. The composites were characterized by field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The results of FE-SEM and FT-IR displayed that the eutectics of LA and CA was well absorbed and dispersed homogeneously into the porous network structure of the AC and the melted eutectics was not easy to leak from the reticular structure. Moreover, there was only physical absorption between the eutectic mixture and AC. The results of DSC and TGA indicated that phase change temperature and latent heat of the prepared composites increased with the increase of the binary eutectics mass ratio and AC can enhance the thermal stability of composites. The composites with the mass ratio 60% of the eutectics melted at – 0.21 ℃ with a latent heat enthalpy of 28.08 J/g and solidified at – 2.33 ℃ with a latent solidification enthalpy of 29.70 J/g. The prepared composites will contribute to cold energy storage of low temperature range.


2021 ◽  
Author(s):  
Yuan LIU ◽  
Yang LIU ◽  
Yanghua CHEN

A novel microencapsulated phase change materials for cold energy storage was synthesised through sol-gel means using decanol as phase change material and titanium dioxide (TiO2) as encapsulated material. The micromorphology and composition of microcapsules were observed by field emission scanning electron microscope (FE-SEM), Fourier transformation infrared spectrometer (FT-IR).Using differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) thermal properties of microcapsules were characterized. Results of FE-SEM and FT-IR indicated that micro sized decanol droplets were encapsulated with TiO2 to form the well-developed core-shell structure, which was only physical coating between them. Furthermore, the chemical and thermal stability of the microcapsules were improved and the inflammability of the microcapsules was lowered using TiO2 as shell material. The DSC result of the desirable ones melt at 3.87 ℃ with a latent melting enthalpy of 61.12 J·g-1 and solidified at – 1.32 ℃ with a latent solidification enthalpy of 59.54 J·g-1. In general, the prepared microcapsules have potential for cold energy storage.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3406 ◽  
Author(s):  
Weiguang Su ◽  
Yilin Li ◽  
Tongyu Zhou ◽  
Jo Darkwa ◽  
Georgios Kokogiannakis ◽  
...  

Previous research has demonstred that microencapsulated phase change materials (MEPCMs) could significantly increase the energy storage density of solar thermal energy storage (TES) systems. Compared with traditional phase change materials (PCMs), MEPCMs have many advantages since they can limit their exposure to the surrounding environment, enlarge the heat transfer area, and maintain the volume as the phase change occurs. In this study, a new MEPCM for solar TES systems is developed by encapsulation of paraffin wax with poly (urea formaldehyde) (PUF). The experimental results revealed that agglomeration of MEPCM particles occurred during the encapsulation process which affected the uniformity of the particle size distribution profile when sodium dodecyl sulfate was used as an emulsifier. The differential scanning calorimetric (DSC) analysis results showed that the melting temperatures were slightly increased by 0.14–0.72 °C after encapsulation. A thermogravimetric (TG) test showed that the sample weight decreased while the weight loss starting temperature was slightly increased after encapsulation. Overall, the sample UF-2, fabricated with the binary emulsifiers of Brij 35 and Brij 30 and 5% nucleating agent, resulted in good particle dispersion and shell integrity, higher core material content and encapsulation efficiency, as well as improved thermal stability.


Sign in / Sign up

Export Citation Format

Share Document