particle dispersion
Recently Published Documents


TOTAL DOCUMENTS

1460
(FIVE YEARS 300)

H-INDEX

65
(FIVE YEARS 8)

2022 ◽  
Vol 228 ◽  
pp. 107142
Author(s):  
Marcelo Dal Belo Takehara ◽  
Ángel David García Llamas ◽  
Muhammad Aqib Chishty ◽  
Kentaro Umeki ◽  
Rikard Gebart

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Guancheng Lu ◽  
Chao Ge ◽  
Zhenyang Liu ◽  
Le Tang ◽  
Haifu Wang

The formation process of reactive materials shaped charge is investigated by X-ray photographs and numerical simulation. In order to study the formation process, a trans-scale discretization method is proposed. A two-dimensional finite element model of shaped charge and reactive material liner is established and the jet formation process, granule size difference induced particle dispersion and granule distribution induced jet particle distribution are analyzed based on Autodyn-2D platform and Euler solver. The result shows that, under shock loading of shaped charge, the Al particle content decreases from the end to the tip of the jet, and increases as the particle size decreases. Besides, the quantity of Al particles at the bottom part of the liner has more prominent influence on the jet head density than that in the other parts, and the Al particle content in the high-speed section of jet shows inversely proportional relationship to the ratio of the particle quantity in the top area to that in the bottom area of liner.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 402
Author(s):  
Tao Fu ◽  
Yun-Ting Tsai ◽  
Qiang Zhou

Computational fluid dynamics (CFD) was used to investigate the explosion characteristics of a Mg/air mixture in a 20 L apparatus via an Euler–Lagrange method. Various fluid properties, namely pressure field, velocity field, turbulence intensity, and the degree of particle dispersion, were obtained and analyzed. The simulation results suggested that the best delayed ignition time was 60 ms after dust dispersion, which was consistent with the optimum delayed ignition time adopted by experimental apparatus. These results indicate that the simulated Mg particles were evenly diffused in the 20 L apparatus under the effect of the turbulence. The simulations also reveal that the pressure development in the explosion system can be divided into the pressure rising stage, the maximum pressure stage, and pressure attenuation stage. The relative error of the maximum explosion pressure between the simulation and the experiments is approximately 1.04%. The explosion model provides reliable and useful information for investigating Mg explosions.


Soft Matter ◽  
2022 ◽  
Author(s):  
Sol Mi Oh ◽  
Chae Han Lee ◽  
So Youn Kim

Since the degree of particle dispersion can determine the physical properties of polymer nanocomposites (PNCs), a great deal of studies has focused on the intrinsic parameters of PNCs such as...


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7902
Author(s):  
Qinfu Zhao ◽  
Xinqian Liu ◽  
Stephen Veldhuis ◽  
Igor Zhitomirsky

Polyvinylidene fluoride (PVDF) is an advanced functional polymer which exhibits excellent chemical and thermal stability, and good mechanical, piezoelectric and ferroelectic properties. This work opens a new strategy for the fabrication of nanocomposites, combining the functional properties of PVDF and advanced inorganic nanomaterials. Electrophoretic deposition (EPD) has been developed for the fabrication of films containing PVDF and nanoparticles of TiO2, MnO2 and NiFe2O4. An important finding was the feasibility of EPD of electrically neutral PVDF and inorganic nanoparticles using caffeic acid (CA) and catechol violet (CV) as co-dispersants. The experiments revealed strong adsorption of CA and CV on PVDF and inorganic nanoparticles, which involved different mechanisms and facilitated particle dispersion, charging and deposition. The analysis of the deposition yield data, chemical structure of the dispersants and the microstructure and composition of the films provided an insight into the adsorption and dispersion mechanisms and the influence of deposition conditions on the deposition rate, film microstructure and composition. PVDF films provided the corrosion protection of stainless steel. Overcoming the limitations of other techniques, this investigation demonstrates a conceptually new approach for the fabrication of PVDF-NiFe2O4 films, which showed superparamagnetic properties. The approach developed in this investigation offers versatile strategies for the EPD of advanced organic-inorganic nanocomposites.


2021 ◽  
Author(s):  
Andreas Luther ◽  
Julian Kostinek ◽  
Ralph Kleinschek ◽  
Sara Defratyka ◽  
Mila Stanisavljevic ◽  
...  

Abstract. Given its abundant coal mining activities, the Upper Silesian Coal Basin (USCB) in southern Poland is one of the largest sources for anthropogenic methane (CH4) emissions in Europe. Here, we report on CH4 emission estimates for coal mine ventilation facilities in the USCB. Our estimates are driven by pair-wise upwind-downwind observations of the column-average dry-air mole fractions of CH4 (XCH4) by a network of four portable, ground-based, sun-viewing Fourier Transform Spectrometers of the type EM27/SUN operated during the CoMet campaign in May/June 2018. The EM27/SUN were deployed in the four cardinal directions around the USCB in approx. 50 km distance to the center of the basin. We report on six case studies for which we inferred emissions by evaluating the mismatch between the observed downwind enhancements and simulations based on trajectory calculations releasing particles out of the ventilation shafts using the Lagrangian particle dispersion model FLEXPART. The latter was driven by wind fields calculated by WRF (Weather Research and Forecasting model) under assimilation of vertical wind profile measurements of three co-deployed wind lidars. For emission estimation, we use a Phillips-Tikhonov regularization scheme with the L-curve criterion. Diagnosed by the averaging kernels, we find that, depending on the catchment area of the downwind measurements, our ad-hoc network can resolve individual facilities or groups of ventilation facilities but that inspecting the averaging kernels is essential to detected correlated estimates. Generally, our instantaneous emission estimates range between 80 and 133 kt CH4 a−1 for the south-eastern part of the USCB and between 414 and 790 kt CH4 a−1 for various larger parts of the basin, suggesting higher emissions than expected from the annual emissions reported by the E-PRTR (European Pollutant Release and Transfer Register). Uncertainties range between 23 and 36 % dominated by the error contribution from uncertain wind fields.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Zhe Sun ◽  
Xiujun Wang ◽  
Xiaodong Kang

Abstract Due to the reservoir heterogeneity, there is still a lot of remaining oil that cannot be displaced by water flooding. Therefore, taking the whole injection-production flow field as the research object, the dominant channel is divided into macro and micro channel. Then the corresponding oil displacement system is adopted to realize the continuous flow diversion and effective expansion of swept volume. For micro channels, the soft microgel particle dispersion can be used. It is a novel flooding system developed in recent years. Due to its excellent performance and advanced mechanism, the oil recovery rate can be greatly improved. Soft microgel particle dispersion consists of microgel particles and its carrier fluid. After coming into porous media, its unique phenomenon of particle phase separation appears, which leads to the properties of "plugging large pore and leave the small one open", and the deformation and migration characteristic in the poros media. Therefore, particle phase separation of soft microgel particle dispersion is studied by using the microfluidic technology and numerical simulation. On this basis, by adopting the NMR and 3D Printing technology, the research on its oil displacement mechanism is further carried out. Furthermore, the typical field application cases are analyzed. Results show that, soft microgel particles have good performance and transport ability in porous media. According to the core displacement experiment, this paper presents the matching coefficient between microgels and pore throat under effective plugging modes. Also, the particle phase separation happens when injecting microgels into the core, which makes the particles enter the large pore in the high permeability layer and fluid enters into small pore. Therefore, working in cooperation, this causes no damage to the low permeability layer. On this basis, theoretically guided by biofluid mechanics, the mathematical model of soft microgel particle is established to simulate its concentration distribution, which obtained the quantitative research results. Furthermore, the micro displacement experiment shows that, microgels has unique deformation and migration characteristic in the poros media, which can greatly expand swept volume. The macro displacement experiment shows that, microgels have good oil displacement performance. Finally, the soft microgel particle dispersion flooding technology has been applied in different oilfields since 2007. Results show that these field trials all obtain great oil increasing effect, with the input-output ratio range of 2.33-14.37. And two field application examples are further introduced. Through interdisciplinary innovative research methods, the oil displacement effect and field application of soft microgel particle dispersion is researched, which proves its progressiveness and superiority. The research results play an important role in promoting the application of this technology.


Author(s):  
Cinara Ewerling da Rosa ◽  
Michel Stefanello ◽  
Silvana Maldaner ◽  
Douglas Stefanello Facco ◽  
Débora Regina Roberti ◽  
...  

Considering the influence of the downslope windstorm called “Vento Norte” (VNOR; Portuguese for “North Wind”) in planetary boundary layer turbulent features, a new set of turbulent parameterizations, which are to be used in atmospheric dispersion models, has been derived. Taylor’s statistical diffusion theory, velocity spectra obtained at four levels (3, 6, 14, and 30 m) in a micrometeorological tower, and the energy-containing eddy scales are used to calculate neutral planetary boundary layer turbulent parameters. Vertical profile formulations of the wind velocity variances and Lagrangian decorrelation time scales are proposed, and to validate this new parameterization, it is applied in a Lagrangian Stochastic Particle Dispersion Model to simulate the Prairie Grass concentration experiments. The simulated concentration results were shown to agree with those observed.


Author(s):  
Sumit Jain ◽  
R.S. Mishra

In this research, a defect-free dissimilar weld joint of AA7075-T6 and AA6061-T6 reinforced with Al2O3 nanoparticles was fabricated via friction stir welding (FSW). The influence of tool rotational speed (700, 900 and 1100 rpm), traverse speed (40, 50 and 60 mm/min) with varying volume fractions of Al2O3 nanoparticles (4%, 7% and 10%) on microstructural evolution and mechanical properties were investigated. The augmentation of various mechanical properties is based on the homogeneity of particle dispersion and grains refinement in the SZ of the FSWed joint. The findings revealed that the remarkable reduction in grain size in the SZ was observed owing to the incorporation of Al2O3 nanoparticles produces the pinning effect, which prevents the growth of grain boundaries by dynamic recrystallization (DRX). The increasing volume fraction of Al2O3 nanoparticles enhanced the mechanical properties such as tensile strength, % elongation and micro-hardness. Agglomeration of particles was observed in the SZ of the FSWed joints produced at lower tool rotational speed of 700 rpm and higher traverse speed of 60 mm/min due to unusual material flow. Homogenous particle dispersion and enhanced material mixing ensue at higher rotational speed of 1100 rpm and lower traverse speed of 40 mm/min exhibit higher tensile strength and micro-hardness.


Sign in / Sign up

Export Citation Format

Share Document