scholarly journals Laminar flame speeds of nano-aluminum/methane hybrid mixtures

2016 ◽  
Vol 166 ◽  
pp. 284-294 ◽  
Author(s):  
Travis Sikes ◽  
M. Sam Mannan ◽  
Eric L. Petersen
2020 ◽  
Vol 65 (6) ◽  
pp. 529-537
Author(s):  
Domnina RAZUS ◽  
◽  
Maria MITU ◽  
Venera GIURCAN ◽  
Codina MOVILEANU ◽  
...  

Crop Science ◽  
1977 ◽  
Vol 17 (4) ◽  
pp. 645-646 ◽  
Author(s):  
D. L. Thompson
Keyword(s):  

2021 ◽  
Vol 35 (17) ◽  
pp. 14063-14076
Author(s):  
Farha Khan ◽  
Ayman M. Elbaz ◽  
Jihad Badra ◽  
Vincent Costanzo ◽  
William L. Roberts

2021 ◽  
Vol 11 (4) ◽  
pp. 1669 ◽  
Author(s):  
Rolf K. Eckhoff ◽  
Gang Li

This paper first addresses the question: what is a dust explosion? Afterwards, some specific issues are briefly reviewed: materials that can give dust explosions, factors influencing ignitability and explosibility of dust clouds, the combustion of dust clouds in air, ignition sources that can initiate dust explosions, primary and secondary dust explosions, dust flash fires, explosions of “hybrid mixtures”, and detonation of dust clouds. Subsequently, measures for dust explosion prevention and mitigation are reviewed. The next section presents the case history of an industrial dust explosion catastrophe in China in 2014. In the final section, a brief review is given of some current research issues that are related to the prevention and mitigation of dust explosions. There is a constant need for further research and development in all the areas elucidated in the paper.


2013 ◽  
Vol 699 ◽  
pp. 111-118
Author(s):  
Rui Shi ◽  
Chang Hui Wang ◽  
Yan Nan Chang

Based on GRI3.0, we study the main chemical kinetics process about reactions of singlet oxygen O2(a1Δg) and ozone O3 with methane-air combustion products, inherit and further develop research in chemical kinetics process with enhancement effects on methane-air mixed combustion by these two molecules. In addition, influence of these two molecules on ignition delay time and flame speed of laminar mixture are considered in our numerical simulation research. This study validates the calculation of this model which cotains these two active molecules by using experimental data of ignition delay time and the speed of laminar flame propagation. In CH4-air mixing laminar combustion under fuel-lean condition(ф=0.5), flame speed will be increased, and singlet oxygen with 10% of mole fraction increases it by 80.34%, while ozone with 10% mole fraction increase it by 127.96%. It mainly because active atoms and groups(O, H, OH, CH3, CH2O, CH3O, etc) will be increased a lot after adding active molecules in the initial stage, and chain reaction be reacted greatly, inducing shortening of reaction time and accelerating of flame speed. Under fuel rich(ф=1.5), accelerating of flame speed will be weakened slightly, singlet oxygen with 10% in molecular oxygen increase it by 48.93%, while ozone with 10% increase it by 70.25%.


Author(s):  
Pablo Diaz Gomez Maqueo ◽  
Philippe Versailles ◽  
Gilles Bourque ◽  
Jeffrey M. Bergthorson

This study investigates the increase in methane and biogas flame reactivity enabled by the addition of syngas produced through fuel reforming. To isolate thermodynamic and chemical effects on the reactivity of the mixture, the burner simulations are performed with a constant adiabatic flame temperature of 1800 K. Compositions and temperatures are calculated with the chemical equilibrium solver of CANTERA® and the reactivity of the mixture is quantified using the adiabatic, freely-propagating premixed flame, and perfectly-stirred reactors of the CHEMKIN-Pro® software package. The results show that the produced syngas has a content of up to 30 % H2 with a temperature up to 950 K. When added to the fuel, it increases the laminar flame speed while maintaining a burning temperature of 1800 K. Even when cooled to 300 K, the laminar flame speed increases up to 30 % from the baseline of pure biogas. Hence, a system can be developed that controls and improves biogas flame stability under low reactivity conditions by varying the fraction of added syngas to the mixture. This motivates future experimental work on reforming technologies coupled with gas turbine exhausts to validate this numerical work.


Sign in / Sign up

Export Citation Format

Share Document