air mixing
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 78)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Wenjin Qin ◽  
Dengbiao Lu ◽  
Lihui Xu

Abstract In this research, n-dodecane and JW are selected as single and multi-component surrogate fuel of aviation kerosene to study the Jet-A spray combustion characteristics. The spray combustion phenomena are simulated using large eddy simulation coupled with detailed chemical reaction mechanism. Proper orthogonal decomposition method is applied to analyze the flow field characteristics, and the instantaneous velocity field are decomposed into four parts, namely the mean field, coherent field, transition field and turbulent field, respectively. The four subfields have their own characteristics. In terms of different fuels, JW has a higher intensity of coherent structures and local vortices than n-dodecane, which promotes the fuel-air mixing and improves the combustion characteristics, and the soot formation is significantly reduced. In addition, with the increase of initial temperature, the combustion is more intense, the ignition delay time is advanced, the flame lift-off length is reduced, and soot formation is increased accordingly.


2021 ◽  
Author(s):  
Claas Hiebenthal ◽  
Finn-Ole Gehlert ◽  
Mark Schmidt ◽  
Thorsten B.H. Reusch ◽  
Frank Melzner

The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (>2 years) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μM methane in seawater using a novel methane-air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over years, and low shell thickness growth could be detected, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from digestion of methane oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels are discussed.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121408
Author(s):  
Zhifei Zhang ◽  
Tie Li ◽  
Run Chen ◽  
Ning Wang ◽  
Yijie Wei ◽  
...  

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121200
Author(s):  
Tianlong Lu ◽  
Zhen Lu ◽  
Lei Shi ◽  
Tianyou Wang ◽  
Mengyu Liu ◽  
...  

2021 ◽  
Author(s):  
Morteza Ali Masoomi ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Abstract Breathing air that contains virus-infected droplets is the leading cause of Covid-19 transmission. Sneezing, coughing, breathing, and talking of an infected person would generate aerosolized droplets that carry the coronavirus. Earlier research efforts have focused on sneezing and coughing as the primary transmission sources. New experiments and field studies have shown that breathing and talking are also effective mechanisms in spreading viruses. In this article, the dispersion of particles/droplets during speaking is studied. COVID-19 virus is about 120 nanometers and is suspended in saliva or mucus droplets emitted by an injected person. These droplets evaporate in a fraction of a second as they enter the environment and reduce in size. However, the droplets’ viral content remains the same as they move by the room’s airflow. The particles from sneezing and coughing are larger than those released by speaking. As the particles/droplets are small, the effect of gravity is small, and they remain suspended in the air for a long time. Also, being small makes them more easily penetrate the respiratory passages. Using the computational fluid dynamics method in conjunction with the ANSYS-Fluent software, the particle transport and dispersion were simulated. The Eulerian approach modeled the airflow (continuous phase), and the Lagrangian approach modeled the particle (discrete phase) movements. This study also investigated the ventilation system’s effects on the distribution of particles in the indoor environment. The displacement and mixing air distribution systems were considered. Simulation results showed that droplets remain suspended in the room for a relatively long time after evaporation. Large particles were deposited quickly, and a significant percentage of smaller particles were removed by the ventilation system. The concentration of particles in the upper half of the room was also quite low for the mixing ventilation system. This was due to the fact that the room air mixing system is relatively uniform; this uniformity of airflow caused the particles to get trapped quickly. Also, for the displacement system, the room airflow was not uniform; these particles were then dispersed in the room and spent more time in the indoor environment.


2021 ◽  
Author(s):  
Priyanka Yadav ◽  
Nagendra P. Yadav

Abstract This paper focuses the computational fluid dynamics analysis inside the gas turbine combustor for the combustion of biodiesel and air mixture. The biodiesel (methyl soyate) is made from the vegetable oil (soybean oil). ANSYS fluent is used for Numerical simulation and model adapted Eddy dissipation concept for turbulence, discrete model, k-epsilon (standard), and the species transport. The model was validated and the combustion performance of biodiesel is predicted with an air-assist injector. The fuel spray is created by commercially available airblast atomizer in this study. The strength of recirculation increases with increased in equivalence ratio. The strong corner recirculation was observed at 0.75 equivalence ratio. The higher turbulence kinetic energy is found at the middle of the combustor. The temperature increases with the increase in the equivalence ratio in the flame stable region while it decreases with increases in the equivalence ratio. It was observed that an increase in the equivalence ratio, flame length increases. The profiles of carbon monoxide (CO) and nitric oxides (NOx) emissions can be obtained at 15% atomizing airflow rates, while the total airflow rate kept constant. The NOx and CO emissions are effected mainly by the fuel-air mixing process that the fuel-air mixing process and atomization have the great impact on CO and NOx emissions.


2021 ◽  
pp. 1-22
Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal

Abstract Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research, particularly the boundary conditions for fuel injection are critical for accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with simplified velocity profiles and turbulence levels. This simplified inlet boundary treatment has minimal effects on results for conventional fuel injection conditions, however, the validity of this approach at supercritical conditions has not been assessed. Comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamic (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. The model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.


Sign in / Sign up

Export Citation Format

Share Document