Explanations of influences of differential diffusion on flame-temperature variations in usual and inverse jet flames

2019 ◽  
Vol 200 ◽  
pp. 262-264 ◽  
Author(s):  
Akhil Nekkanti ◽  
Antonio L. Sánchez ◽  
Forman A. Williams
Author(s):  
Gopalendu Pal ◽  
Ankur Gupta ◽  
Michael F. Modest ◽  
Daniel C. Haworth

The accuracy and computational expense of various radiation models in the simulation of turbulent jet flames are compared. Both nonluminous and luminous methane-air non-premixed turbulent jet flames are simulated using a comprehensive combustion solver. The combustion solver consists of a finite-volume/probability density function-based flow–chemistry solver interfaced with a high-accuracy spectral radiation solver. Flame simulations were performed using various k-distribution-based spectral models and radiative transfer equation (RTE) solvers, such as P-1, P-3, finite volume/discrete ordinates method (FVM/DOM), and Photon Monte Carlo (PMC) methods, with/without the consideration of turbulence-radiation interaction (TRI). TRI is found to drop the peak temperature by close to 150 K for a luminous flame (optically thicker) and 25–100 K for a nonluminous flame (optically thinner). RTE solvers are observed to have stronger effects on peak flame temperature, total radiant heat source and NO emission than the spectral models. P-1 is found to be the computationally least expensive RTE solver and the FVM the most expensive for any spectral model. For optically thinner flames all radiation models yield excellent accuracy. For optically thicker flames P-3 and FVM predict radiation more accurately than the P-1 method when compared to the benchmark line-by-line (LBL) PMC.


2019 ◽  
Vol 37 (2) ◽  
pp. 1757-1766 ◽  
Author(s):  
A. Almagro ◽  
O. Flores ◽  
M. Vera ◽  
A. Liñán ◽  
A.L. Sánchez ◽  
...  

2018 ◽  
Vol 198 ◽  
pp. 305-319 ◽  
Author(s):  
Ki Sung Jung ◽  
Seung Ook Kim ◽  
Tianfeng Lu ◽  
Suk Ho Chung ◽  
Bok Jik Lee ◽  
...  

1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


Author(s):  
D. M. Davies ◽  
R. Kemner ◽  
E. F. Fullam

All serious electron microscopists at one time or another have been concerned with the cleanliness and freedom from artifacts of thin film specimen support substrates. This is particularly important where there are relatively few particles of a sample to be found for study, as in the case of micrometeorite collections. For the deposition of such celestial garbage through the use of balloons, rockets, and aircraft, the thin film substrates must have not only all the attributes necessary for use in the electron microscope, but also be able to withstand rather wide temperature variations at high altitude, vibration and shock inherent in the collection vehicle's operation and occasionally an unscheduled violent landing.Nitrocellulose has been selected as a film forming material that meets these requirements yet lends itself to a relatively simple clean-up procedure to remove particulate contaminants. A 1% nitrocellulose solution is prepared by dissolving “Parlodion” in redistilled amyl acetate from which all moisture has been removed.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Sign in / Sign up

Export Citation Format

Share Document