spectral radiation
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 45)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 11 (23) ◽  
pp. 11574
Author(s):  
Vladimir A. Srećković ◽  
Desanka M. Šulić ◽  
Veljko Vujčić ◽  
Zoran R. Mijić ◽  
Ljubinko M. Ignjatović

Strong radiation from solar X-ray flares can produce increased ionization in the terrestrial D-region and change its structure. Moreover, extreme solar radiation in X-spectral range can create sudden ionospheric disturbances and can consequently affect devices on the terrain as well as signals from satellites and presumably cause numerous uncontrollable catastrophic events. One of the techniques for detection and analysis of solar flares is studying the variations in time of specific spectral lines. The aim of this work is to present our study of solar X-ray flare effects on D-region using very low-frequency radio signal measurements over a long path in parallel with the analysis of X-spectral radiation, and to obtain the atmospheric parameters (sharpness, reflection height, time delay). We introduce a novel modelling approach and give D-region coefficients needed for modelling this medium, as well as a simple expression for electron density of lower ionosphere plasmas. We provide the analysis and software on GitHub.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1337
Author(s):  
Samuel Konatham ◽  
Javier Martín-Torres ◽  
Maria-Paz Zorzano

Since the earliest development of the eye (and vision) around 530 million years ago (Mya), it has evolved, adapting to different habitats, species, and changing environmental conditions on Earth. We argue that a radiation environment determined by the atmosphere played a determining role in the evolution of vision, specifically on the human eye, which has three vision regimes (photopic-, scotopic-, and mesopic vision) for different illumination conditions. An analysis of the irradiance spectra, reaching the shallow ocean depths, revealed that the available radiation could have determined the bandwidth of the precursor to vision systems, including human vision. We used the radiative transfer model to test the existing hypotheses on human vision. We argue that, once on the surface, the human photopic (daytime) and scotopic (night-time) vision followed different evolutionary directions, maximum total energy, and optimum information, respectively. Our analysis also suggests that solar radiation reflected from the moon had little or no influence on the evolution of scotopic vision. Our results indicate that, apart from human vision, the vision of only a few birds, rodents, and deep-sea fish are strongly correlated to the available radiation within their respective habitats.


2021 ◽  
Vol 60 (2) ◽  
pp. 71-78
Author(s):  
Valentyna Polischuk ◽  
Oksana Koliada

LED street lighting is a topical trend in modern outdoor lighting. High light output of LEDs creates all conditions for modernization of electric lighting networks in Ukraine. Human vision is a complex process associated with retinal light perception. Vision is divided into: day vision, night vision, and twilight vision. The function of the eye is highly dependent on the distribution of brightness in the field of vision. The spectral sensitivity of photoreceptors varies for different wavelengths of the visible spectrum and different levels of light intensity. The rationing of the lighting installation is based on detailed studies of the observer’s visual performance depending on different lighting conditions. One of the main luminous parameters that can easily be measured objectively is illumination. Brightness as a function of illumination, the observer’s position and the spectral coefficient of the working surface reflection is more informative, but has some difficulty in measuring. There is a clear need to develop a system that would make it possible to uniquely assess the visual efficiency of a given spectral composition under certain observation conditions. It was decided to introduce the term equivalent brightness as the parameter of such a system. The difficulty of using the function Vek(λ,Lek) to calculate the equivalent brightness is the function’s dependence Vek(λ,Lek) on Lek. The aim of the study is to approximate the function of the relative spectral luminous efficiency in mesopathic regions by a set of standard CIE functions that do not depend on the value of equivalent luminosity. The calculation method Vek(λ,Lek) is proposed using only two normalized functions of the relative spectral radiation efficiency for day V(λ) and night V'(λ) vision. The use of such approximation function makes it possible to determine the equivalent brightness, which adequately reflects the level of visual perception under the conditions of ambient illumination, based on the photometric brightness of the light source. To calculate Vek(λ,Lek) we use the ICE recommended functions of relative spectral light efficiency for the twilight vision, which are based on the spectral composition of the blackbody radiation with a color temperature of 2042 K. The use of the developed methodology provides results that more accurately characterize the efficiency of light sources in outdoor lighting installations compared to the results of calculations obtained when using standard methods.


Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121194
Author(s):  
Shiquan Shan ◽  
Binghong Chen ◽  
Zhijun Zhou ◽  
Yanwei Zhang

2021 ◽  
Author(s):  
Issa Faye ◽  
Ababacar Ndiaye ◽  
Elkhadji Mamadou

The variation of the incidence angle over the year is an important parameter determined the performance of the module. The standard orientation of the module or a PV system, the perpendicular positioning of the sun to the module’s surface occurs twice a year. In outdoor exposed, angular losses of the module decrease the output of the PV or the system of PV. Although these losses are not always negligible, they are commonly not taken into account when correcting the electrical characteristics of the PV module or estimating the energy production of PV systems. This chapter is focused on the measurement of the angular response and spectral radiation (global and direct radiation) of solar cells based on two different silicon technologies, monocrystalline textured (m-Si) and non textured (mc-Si). The analysis of the source of deviation from the theoretical response, especially those due to the surface reflectance. As main contributions, the effects of glass encapsulation on the angular response of the modules are investigated by comparing the electrical parameter of the textured module to no textured and quantify electrical angular losses in this measurement area.


2021 ◽  
Vol 13 (15) ◽  
pp. 3020
Author(s):  
Yueming Cheng ◽  
Tie Dai ◽  
Daisuke Goto ◽  
Hiroshi Murakami ◽  
Mayumi Yoshida ◽  
...  

Dust aerosols have great effects on global and regional climate systems. The Global Change Observation Mission-Climate (GCOM-C), also known as SHIKISAI, which was launched on 23 December 2017 by the Japan Aerospace Exploration Agency (JAXA), is a next-generation Earth observation satellite that is used for climate studies. The Second-Generation Global Imager (SGLI) aboard GCOM-C enables the retrieval of more precious global aerosols. Here, the first assimilation study of the aerosol optical thicknesses (AOTs) at 500 nm observed by this new satellite is performed to investigate a severe dust storm in spring over East Asia during 28–31 March 2018. The aerosol observation assimilation system is an integration of the four-dimensional local ensemble transform Kalman filter (4D-LETKF) and the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-Hydrostatic Icosahedral Atmospheric Model (NICAM). Through verification with the independent observations from the Aerosol Robotic Network (AERONET) and the Asian Dust and Aerosol Lidar Observation Network (AD-Net), the results demonstrate that the assimilation of the GCOM-C aerosol observations can significantly enhance Asian dust storm simulations. The dust characteristics over the regions without GCOM-C observations are better revealed from assimilating the adjacent observations within the localization length, suggesting the importance of the technical advances in observation and assimilation, which are helpful in clarifying the temporal–spatial structure of Asian dust and which could also improve the forecasting of dust storms, climate prediction models, and aerosol reanalysis.


2021 ◽  
pp. 17-25
Author(s):  
Anatoly Sviridov ◽  
Leonid Saginov

The paper proposes a new method for calculating the integral and spectral radiation coeffi-cients of extended subwavelength particles (ESPs), which include micro and nanocylinders and parallelepipeds. Comparison of the results of calculations by the proposed method with the calculated and experimental data found in the literature is carried out. It is shown that with decrease in only the transverse dimensions of the ESP (from values much larger than λmax to values much smaller than max) from the radiation spectrum, which was originally de-scribed by Planck's law and contained modes with both polarization directed along the axis and with polarization directed perpendicular to the axis , modes with wavelengths exceeding λcutoff (λcutoff is the cutoff wavelength) and having polarization perpendicular to the longi-tudinal axis of the ESP will be gradually eliminated, while modes with wavelengths polarized along the ESP axis will always be present in the radiation spectrum of the ESP. When the transverse dimensions of the ESP become much less than λmax, then all modes with polariza-tion perpendicular to the axis will disappear from the emission spectrum of this ESP, and on-ly modes with longitudinal polarization will remain. This is a fundamental difference from the SPs considered earlier in [16, 17], where methods for calculating SPs as disks, spheres, cubes were proposed. All the proposed calculation methods use the formalism of the decom-position of radiation fluxes into spectral-spatial modes.


Sign in / Sign up

Export Citation Format

Share Document