scholarly journals Revealing soot maturity based on multi-wavelength absorption/emission measurements in laminar axisymmetric coflow ethylene diffusion flames

2021 ◽  
Vol 227 ◽  
pp. 147-161
Author(s):  
Jérôme Yon ◽  
Juan José Cruz ◽  
Felipe Escudero ◽  
José Morán ◽  
Fengshan Liu ◽  
...  
2017 ◽  
Vol 10 (8) ◽  
pp. 2837-2850 ◽  
Author(s):  
Jorge Saturno ◽  
Christopher Pöhlker ◽  
Dario Massabò ◽  
Joel Brito ◽  
Samara Carbone ◽  
...  

Abstract. Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June–September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm−1, with a maximum of 15.9 Mm−1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.


2019 ◽  
Vol 27 (16) ◽  
pp. 23576 ◽  
Author(s):  
Guangsheng Deng ◽  
Xianglian Song ◽  
Sina Abedini Dereshgi ◽  
Haiqing Xu ◽  
Koray Aydin

2000 ◽  
Vol 123 (6) ◽  
pp. 1093-1097 ◽  
Author(s):  
Yudaya Sivathanu ◽  
Anthony Hamins ◽  
George Mulholland ◽  
Takashi Kashiwagi ◽  
Robert Buch

The optical properties of particulate emitted from fires burning two distinct polydimethylsiloxane fluids (D4 and M2 or MM, where D=CH32SiO and M=CH33SiO2) were obtained using a transmission cell-reciprocal nephelometer in conjunction with gravimetric sampling. The specific absorption coefficient of particulate ash from fires burning D4 and MM is significantly lower than that of particulate soot from an acetylene (hydrocarbon) flame. Scattering is the dominant part of extinction in fires burning the silicone fluids. This is very different from extinction by soot particles in hydrocarbon fires, where absorption is approximately five times greater than scattering. Temperatures and particulate volume fractions along the axis of a silicone fire D4 were measured using multi-wavelength absorption/emission spectroscopy. The structure of the D4 flames is markedly different from hydrocarbon flames. The temperatures and particulate volume fractions very close to the burner surface are much higher than in comparably sized hydrocarbon flames.


2021 ◽  
Author(s):  
Anna Ryś ◽  
Lucyna Samek

Abstract. The evaluation of black carbon (BC) sources is very important, especially in environmental sciences. This study shows how the contributions of biomass burning and fossil fuel/traffic to PM2.5 mass can be assessed. MABI was used for this purpose and gave the possibility to measure the transmission of light at different wavelengths. Absorption coefficients were calculated from measurements data and recalculated for concentrations of eBC. The samples of PM2.5 fraction were collected from February 1, 2020 to March 27, 2021 every third day in Krakow, Poland (50°04' N, 19°54'47" E). The concentrations of equivalent BC (eBC) from fossil fuel/traffic and biomass burning were in the range 0.82–11.64 μg m−3) and 0.007–0.84 μg m−3, respectively. At the same time, PM2.5 concentrations varied from 3.14 to 55.24 μg m−3. It means that about 18 % of PM2.5 mass belongs to eBC and 11.3 % of this value comes from biomass burning. The eBC contribution is the significant part of PM2.5 mass and we observed seasonal variation of the eBC concentration during the year with the peak in winter. The contribution of biomass burning to PM2.5 mass is more stable during the whole year. The eBC concentration during workdays is a bit higher than during weekend days but biomass burning is similar for both days (work and weekend taken as the mean for the whole period).


1981 ◽  
Vol 103 (2) ◽  
pp. 357-362 ◽  
Author(s):  
S. Bard ◽  
P. J. Pagni

Flame radiation, the dominant heat transfer mechanism in many combustion and fire safety related problems, is primarily controlled by the fraction of flame volume occupied by solid carbon particulate. A multi-wavelength laser transmission technique is used here to measure carbon particulate volume fractions and approximate particle size distributions in ten common solid, cellular and liquid fueled small scale, 0 (10 cm dia), pool fire diffusion flames. The most probable particle radius, rmax, and concentration, N0, are two parameters in the assumed gamma function size distribution form which are determined for each fuel by simultaneously measuring light transmission of two superimposed laser wavelengths. The resulting soot volume fractions range from fv ∼ 4 × 10−6 for cellular polystyrene to fv ∼ 7 × 10−8 for alcohol. Cellular polystyrene has the largest particles, rmax ∼ 60 nm while wood has the smallest, rmax ∼ 20 nm. The carbon particulate optical properties used in the analysis are shown to be representative of actual flame soot and are more accurate than the soot refractive index usually assumed in the literature. Finally, mean particle sizes obtained for all fuels indicate that the small particle absorption limit assumption is a reasonable approximation for infrared flame radiation calculations.


Sign in / Sign up

Export Citation Format

Share Document