online measurements
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 70)

H-INDEX

26
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8057
Author(s):  
Wilson Cesar Sant’Ana ◽  
Germano Lambert-Torres ◽  
Erik Leandro Bonaldi ◽  
Bruno Reno Gama ◽  
Tiago Goncalves Zacarias ◽  
...  

This paper presents an innovative concept for the online application of Frequency Response Analysis (FRA). FRA is a well known technique that is applied to detect damage in electric machinery. As an offline technique, the machine under testing has to be removed from service—which may cause loss of production. Experimental adaptations of FRA to online operation are usually based on the use of passive high pass coupling—which, ideally, should provide attenuation to the grid voltage, and at the same time, allow the high frequency FRA signals to be injected at the machine. In practice, however, the passive coupling results in a trade-off between the required attenuation and the useful area obtained at the FRA spectra. This paper proposes the use of an active coupling system, based on power electronics, in order to cancel the grid voltage at the terminals of FRA equipment and allow its safe connection to an energized machine. The paper presents the basic concepts of FRA and the issue of online measurements. It also presents basic concepts about power electronics converters and the operating principles of the Modular Multilevel Converter, which enables the generation of an output voltage with low THD, which is important for tracking the grid voltage with minimum error.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3819
Author(s):  
Hamed Peidayesh ◽  
Katarína Mosnáčková ◽  
Zdenko Špitalský ◽  
Abolfazl Heydari ◽  
Alena Opálková Šišková ◽  
...  

Conductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)–based composites and changes in electroconductive paths during cyclic deformation. TPS–based composites filled with various carbon black (CB) contents were prepared through melt processing. The electrical conductivity and physicochemical properties of TPS–CB composites, including mechanical properties and rheological behavior, were evaluated. With increasing CB content, the tensile strength and Young’s modulus were found to increase substantially. We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology and electrical conductivity. To observe the changing structure of the conductive CB paths during cyclic deformation, both the electrical conductivity and mechanical properties were recorded in parallel using online measurements. Moreover, the instant electrical conductivity measured online during mechanical deformation of the materials was taken as the parameter indirectly describing the structure of the conductive CB network. The electrical conductivity was found to increase during five runs of repeated cyclic mechanical deformations to constant deformation below strain at break, indicating good recovery of conductive paths and their new formation.


Author(s):  
Xi Yang ◽  
Mei Zheng ◽  
Yue Liu ◽  
Caiqing Yan ◽  
Junyi Liu ◽  
...  

2021 ◽  
Author(s):  
Himadri Sekhar Bhowmik ◽  
Ashutosh Shukla ◽  
Vipul Lalchandani ◽  
Jay Dave ◽  
Neeraj Rastogi ◽  
...  

Abstract. Characterizing the chemical composition of ambient particulate matter (PM) provides valuable information on the concentration of secondary species, toxic metals and assists in the validation of abatement techniques. The chemical components of PM can be measured by sampling on filters and analysing them in the laboratory or using real-time measurements of the species. It is important for the accuracy of the PM monitoring networks that measurements from the offline and online methods are comparable and biases are known. The concentrations of water-soluble inorganic ions (NO3−, SO42−, NH4+ and Cl−) in PM2.5 measured from the 24 hrs filter samples using ion chromatography (IC) were compared with the online measurements of inorganics from aerosol mass spectrometer (AMS) with a frequency of 2 mins. Also, the concentrations of heavy and trace elements determined from the 24 hrs filter samples using inductively coupled plasma mass spectroscopy (ICP-MS) were compared with the online measurements of half-hourly heavy and trace metal’s concentrations from Xact 625i ambient metal mass monitor. The comparison was performed over two seasons (summer and winter) characterized by their different metrological conditions at IITD and during winter at IITMD, two sites located in Delhi, NCR, India, one of the heavily polluted urban areas in the world. Collocated deployments of the instruments helped to quantify the differences between online and offline measurements and evaluate the possible reasons for positive and negative biases. The slopes for SO42− and NH4+ were closer to 1:1 line during winter and decreased during summer at both sites. The higher concentrations on the filters were due to the formation of particulate (NH4)2SO4. Filter-based NO3− measurements were lower than online NO3− during summer at IITD and winter at IITMD due to the volatile nature of NO3− from the filter substrate. Offline measured Cl− was consistently higher than AMS derived Cl− during summer and winter at both sites. Based on their comparability characteristics, elements were grouped under 3 categories. The online element data were highly correlated (R2 > 0.8) with the offline measurements for Al, K, Ca, Ti, Zn, Mn, Fe, Ba, and Pb during summer at IITD and winter at both the sites. The higher correlation coefficient demonstrated the precision of the measurements of these elements by both Xact 625i and ICP-MS. Some of these elements showed higher Xact 625i elemental concentrations than ICP-MS measurements by an average of 10–40 % depending on the season and site. The reasons for the differences in the concentration of the elements could be the distance between two inlets for the two methods, line interference between two elements in Xact measurements, sampling strategy, variable concentrations of elements in blank filters and digestion protocol for ICP measurements.


2021 ◽  
Author(s):  
Chenjie Yu ◽  
Dantong Liu ◽  
Kang Hu ◽  
Ping Tian ◽  
Yangzhou Wu ◽  
...  

Abstract. The size-resolved physiochemical properties of aerosols determine their atmospheric lifetime, cloud interactions, and the deposition rate on human respiratory system, however most atmospheric composition studies tend to evaluate these properties in bulk. This study investigated size-resolved constituents of aerosols on mass and number basis, and their droplet activation properties, by coupling a suite of online measurements with an aerosol aerodynamic classifier (AAC) based on aerodynamic diameter (Da) in Pinggu, a suburb of Beijing. While organic matter accounted for a large fraction of mass, a higher contribution of particulate nitrate at larger sizes (Da > 300 nm) was found under polluted cases. By applying the mixing state of refractory black carbon containing particles (rBCc) and composition-dependent densities, aerosols including rBCc were confirmed nearly spherical at Da > 300 nm. Importantly, the number fraction of rBCc was found to increase with Da at all pollution levels. The number fraction of rBC is found to increase from ~3 % at ~90 nm to ~15 % at ~1000 nm, and this increasing rBC number fraction may be caused by the coagulation during atmospheric aging. The droplet activation diameter at a water supersaturation of 0.2 % was 112 ± 6 nm and 193 ± 41 nm for all particles with Da smaller than 1 μm (PM1) and rBCc respectively. As high as 52 ± 6 % of rBCc and 50 ± 4 % of all PM1 particles in number could be activated under heavy pollution due to enlarged particle size, which could be predicted by applying the volume-mixing of substance hygroscopicity within rBCc. As rBCc contributes to the quantity of aerosols at larger particle size, these thickly coated rBC may contribute to the radiation absorption significantly or act as an important source of cloud condensation nuclei (CCN). This size regime may also exert important health effects due to their higher deposition rate.


Author(s):  
Felix Essingholt ◽  
Yixiong Zhao ◽  
Andreas Hennig ◽  
Anton Grabmaier

2021 ◽  
Vol 14 (10) ◽  
pp. 6357-6378
Author(s):  
Linghan Zeng ◽  
Amy P. Sullivan ◽  
Rebecca A. Washenfelder ◽  
Jack Dibb ◽  
Eric Scheuer ◽  
...  

Abstract. Brown carbon (BrC) consists of particulate organic species that preferentially absorb light at visible and ultraviolet wavelengths. Ambient studies show that as a component of aerosol particles, BrC affects photochemical reaction rates and regional to global climate. Some organic chromophores are especially toxic, linking BrC to adverse health effects. The lack of direct measurements of BrC has limited our understanding of its prevalence, sources, evolution, and impacts. We describe the first direct, online measurements of water-soluble BrC on research aircraft by three separate instruments. Each instrument measured light absorption over a broad wavelength range using a liquid waveguide capillary cell (LWCC) and grating spectrometer, with particles collected into water by a particle-into-liquid sampler (CSU PILS-LWCC and NOAA PILS-LWCC) or a mist chamber (MC-LWCC). The instruments were deployed on the NSF C-130 aircraft during WE-CAN 2018 as well as the NASA DC-8 and the NOAA Twin Otter aircraft during FIREX-AQ 2019, where they sampled fresh and moderately aged wildfire plumes. Here, we describe the instruments, calibrations, data analysis and corrections for baseline drift and hysteresis. Detection limits (3σ) at 365 nm were 1.53 Mm−1 (MC-LWCC; 2.5 min sampling time), 0.89 Mm−1 (CSU PILS-LWCC; 30 s sampling time), and 0.03 Mm−1 (NOAA PILS-LWCC; 30 s sampling time). Measurement uncertainties were 28 % (MC-LWCC), 12 % (CSU PILS-LWCC), and 11 % (NOAA PILS-LWCC). The MC-LWCC system agreed well with offline measurements from filter samples, with a slope of 0.91 and R2=0.89. Overall, these instruments provide soluble BrC measurements with specificity and geographical coverage that is unavailable by other methods, but their sensitivity and time resolution can be challenging for aircraft studies where large and rapid changes in BrC concentrations may be encountered.


2021 ◽  
Vol 172 ◽  
pp. 107131
Author(s):  
Devrim Gürsel ◽  
Gerhard Möllemann ◽  
Elisabeth Clausen ◽  
Karl Nienhaus ◽  
Hermann Wotruba

2021 ◽  
pp. 95-102
Author(s):  
G. Franken ◽  
J. Balendonck ◽  
E.A. van Os ◽  
A. Vroegop

Sign in / Sign up

Export Citation Format

Share Document