scholarly journals Carbon Particulate in Small Pool Fire Flames

1981 ◽  
Vol 103 (2) ◽  
pp. 357-362 ◽  
Author(s):  
S. Bard ◽  
P. J. Pagni

Flame radiation, the dominant heat transfer mechanism in many combustion and fire safety related problems, is primarily controlled by the fraction of flame volume occupied by solid carbon particulate. A multi-wavelength laser transmission technique is used here to measure carbon particulate volume fractions and approximate particle size distributions in ten common solid, cellular and liquid fueled small scale, 0 (10 cm dia), pool fire diffusion flames. The most probable particle radius, rmax, and concentration, N0, are two parameters in the assumed gamma function size distribution form which are determined for each fuel by simultaneously measuring light transmission of two superimposed laser wavelengths. The resulting soot volume fractions range from fv ∼ 4 × 10−6 for cellular polystyrene to fv ∼ 7 × 10−8 for alcohol. Cellular polystyrene has the largest particles, rmax ∼ 60 nm while wood has the smallest, rmax ∼ 20 nm. The carbon particulate optical properties used in the analysis are shown to be representative of actual flame soot and are more accurate than the soot refractive index usually assumed in the literature. Finally, mean particle sizes obtained for all fuels indicate that the small particle absorption limit assumption is a reasonable approximation for infrared flame radiation calculations.

2021 ◽  
Vol 227 ◽  
pp. 147-161
Author(s):  
Jérôme Yon ◽  
Juan José Cruz ◽  
Felipe Escudero ◽  
José Morán ◽  
Fengshan Liu ◽  
...  

2020 ◽  
Vol 214 ◽  
pp. 224-237 ◽  
Author(s):  
Bifen Wu ◽  
Somesh P. Roy ◽  
Xinyu Zhao
Keyword(s):  

2020 ◽  
Vol 633 ◽  
pp. A67 ◽  
Author(s):  
I. Kontogiannis ◽  
G. Tsiropoula ◽  
K. Tziotziou ◽  
C. Gontikakis ◽  
C. Kuckein ◽  
...  

Context. We study the evolution of a small-scale emerging flux region (EFR) in the quiet Sun, from its emergence in the photosphere to its appearance in the corona and its decay. Aims. We track processes and phenomena that take place across all atmospheric layers; we explore their interrelations and compare our findings with those from recent numerical modelling studies. Methods. We used imaging as well as spectral and spectropolarimetric observations from a suite of space-borne and ground-based instruments. Results. The EFR appears in the quiet Sun next to the chromospheric network and shows all morphological characteristics predicted by numerical simulations. The total magnetic flux of the region exhibits distinct evolutionary phases, namely an initial subtle increase, a fast increase with a Co-temporal fast expansion of the region area, a more gradual increase, and a slow decay. During the initial stages, fine-scale G-band and Ca II H bright points coalesce, forming clusters of positive- and negative-polarity in a largely bipolar configuration. During the fast expansion, flux tubes make their way to the chromosphere, pushing aside the ambient magnetic field and producing pressure-driven absorption fronts that are visible as blueshifted chromospheric features. The connectivity of the quiet-Sun network gradually changes and part of the existing network forms new connections with the newly emerged bipole. A few minutes after the bipole has reached its maximum magnetic flux, the bipole brightens in soft X-rays forming a coronal bright point. The coronal emission exhibits episodic brightenings on top of a long smooth increase. These coronal brightenings are also associated with surge-like chromospheric features visible in Hα, which can be attributed to reconnection with adjacent small-scale magnetic fields and the ambient quiet-Sun magnetic field. Conclusions. The emergence of magnetic flux even at the smallest scales can be the driver of a series of energetic phenomena visible at various atmospheric heights and temperature regimes. Multi-wavelength observations reveal a wealth of mechanisms which produce diverse observable effects during the different evolutionary stages of these small-scale structures.


Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119552
Author(s):  
Yuling Dou ◽  
Haiqiang Liu ◽  
Bin Liu ◽  
Yu Zhang ◽  
Yongqiang Liu ◽  
...  

2012 ◽  
Vol 693 ◽  
pp. 319-344 ◽  
Author(s):  
Xueming Shao ◽  
Tenghu Wu ◽  
Zhaosheng Yu

AbstractA fictitious domain method is used to perform fully resolved numerical simulations of particle-laden turbulent flow in a horizontal channel. The effects of large particles of diameter 0.05 and 0.1 times the channel height on the turbulence statistics and structures are investigated for different settling coefficients and volume fractions (0.79 %–7.08 %) for the channel Reynolds number being 5000. The results indicate the following. (a) When the particle sedimentation effect is negligible (i.e. neutrally buoyant), the presence of particles decreases the maximum r.m.s. of streamwise velocity fluctuation near the wall by weakening the intensity of the large-scale streamwise vortices, while increasing the r.m.s. of the streamwise fluctuating velocity in the region very close to the wall and in the centre region. On the other hand, the particles increase the r.m.s. of transverse and spanwise fluctuating velocities in the near-wall region by inducing the small-scale vortices. (b) When the particle settling effect is so substantial that most particles settle onto the bottom wall and form a particle sediment layer (SL), the SL plays the role of a rough wall and parts of the vortex structures shedding from the SL ascend into the core region and substantially increase the turbulence intensity there. (c) When the particle settling effect is moderate, the effects of particles on the turbulence are a combination of the former two situations, and the Shields number is a good parameter for measuring the particle settling effects (i.e. the particle concentration distribution in the transverse direction). The average velocities of the particle are smaller in the lower half-channel and larger in the upper half-channel compared to the local fluid velocities in the presence of gravity effects. The effects of the smaller particles on the turbulence are found to be stronger at the same particle volume fractions.


Sign in / Sign up

Export Citation Format

Share Document