Experimental investigation of lean-premixed hydrogen combustion instabilities in a can-annular combustion system

2021 ◽  
pp. 111697
Author(s):  
Kihun Moon ◽  
Yongseok Choi ◽  
Kyu Tae Kim
Author(s):  
Timo Buschhagen ◽  
Rohan Gejji ◽  
John Philo ◽  
Lucky Tran ◽  
J. Enrique Portillo Bilbao ◽  
...  

An experimental investigation of self-excited combustion instabilities in a high pressure, single-element, lean, premixed, natural gas dump-combustor is presented in this paper. The combustor is designed for optical access and is instrumented with high frequency pressure transducers at multiple axial locations. A parametric survey of operating conditions including inlet air temperature and equivalence ratio has been performed, which presents a wide range of peak to peak pressure fluctuations (p′) of the mean chamber pressure (pc). Two cases, Flame A and B with p′ /pc = 28% and p′/pc = 15% respectively, both presenting self-excited instabilities at the fundamental longitudinal (1L) mode of the combustion chamber, are discussed to study the coupling mechanism between flame-vortex interactions and the acoustic field in the chamber. OH*-chemiluminescence is used to obtain a map of global heat release distribution in the combustor. Phase conditioned analysis and Dynamic Mode Decomposition (DMD) analysis is performed, to highlight the contrasting mechanisms that lead to the two distinct instability regimes. Flame interactions with shear layer vortex structures just downstream of the dump plane during the compression phase of the acoustic cycle are found to augment the instability amplitude. Flame A engages strongly in this coupling, whereas Flame B is less affected and establishes a lower amplitude limit cycle.


2016 ◽  
pp. 231-259 ◽  
Author(s):  
J. O'Connor ◽  
S. Hemchandra ◽  
T. Lieuwen

Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.


2015 ◽  
Vol 35 (2) ◽  
pp. 1321-1329 ◽  
Author(s):  
A.J. Aspden ◽  
M.S. Day ◽  
J.B. Bell

Sign in / Sign up

Export Citation Format

Share Document