A new flow-based fast handover method for Mobile IPv6 network with route optimization

2007 ◽  
Vol 30 (18) ◽  
pp. 3870-3880 ◽  
Author(s):  
Chen Jin ◽  
Zhang Xi-Huang
Author(s):  
Jani Puttonen ◽  
Ari Viinikainen ◽  
Miska Sulander ◽  
Timo Hamalainen

Mobile IPv6 (MIPv6) has been standardized for mobility management in the IPv6 network. When a mobile node changes its point of attachment in the IPv6 network, it experiences a time due MIPv6 procedures when it cannot receive or send any packets. This time called the handover delay might also cause packet loss resulting undesired quality-of-service degradation for various types of applications. The minimization of this delay is especially important for real-time applications. In this chapter we present a fast handover method called the flow-based fast handover for Mobile IPv6 (FFHMIPv6) to speed up the MIPv6 handover processes. FFHMIPv6 employs flow information and IPv6-in-IPv6 tunneling for the fast redirection of the flows during the MIPv6 handover. Also, FFHMIPv6 employs a temporary hand-off-address to minimize the upstream connectivity. We present the performance results comparing the FFHMIPv6 method to other fundamental handover methods with Network Simulator 2 (ns-2) and Mobile IPv6 for Linux (MIPL) network.


2014 ◽  
Vol 31 (2) ◽  
pp. 127-148
Author(s):  
Ing-Chau Chang ◽  
Ciou-Song Lu ◽  
Sheng-Chih Wang

Purpose – In the past, by adopting the handover prediction concept of the fast mobile IPv6, the authors have proposed a cross-layer architecture, which was called the proactive fast HCoP-B (FHCoP-B), to trigger layer 3 HCoP-B route optimization flow by 802.11 and 802.16 link events before the actual layer 2 handover of a mobile subnet in the nested mobile network (NEMO) occurs. In this way, proactive FHCoP-B has shortened its handover latency and packet loss. However, there are two scenarios where proactive FHCoP-B cannot normally complete its operations due to fast movements of the NEMO during handover. The paper aims to discuss these issues. Design/methodology/approach – In this paper, the authors will propose efficient reactive FHCoP-B flows for these two scenarios to support fast and seamless handovers. The authors will further extend the analytical model proposed for mobile IPv6 to investigate four performance metrics of proactive and reactive FHCoP-B, HCoP-B and two well-known NEMO schemes with the radio link protocol (RLP), which can detect packet losses and performs retransmissions over the error-prone wireless link. Findings – Through intensive simulations, the authors conclude that FHCoP-B outperforms HCoP-B and the other two well-known NEMO schemes by achieving the shortest handover latencies, the smallest number of packet losses and the fewest playback interruption time during handover only with few extra buffer spaces, even over error-prone wireless links of the nested NEMO. Originality/value – This paper has three major contributions, which are rare in the NEMO literature. First, the proactive FHCoP-B has been enhanced as the reactive one to handle two fast handover scenarios with RLP for the nested NEMO. Second, the reactive FHCoP-B supports seamless reactive handover for the nested NEMO over error-prone wireless links. Third, mathematical performance analyses for two scenarios of reactive FHCoP-B with RLP over error-prone wireless links have been conducted.


2008 ◽  
Vol 28 (1) ◽  
pp. 74-76
Author(s):  
Xin-yu YANG
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document