ipv6 network
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yasser Alharbi ◽  
Ali Alferaidi ◽  
Kusum Yadav ◽  
Gaurav Dhiman ◽  
Sandeep Kautish

With the rapid increase and complexity of IPv6 network traffic, the traditional intrusion detection system Snort detects DoS attacks based on specific rules, which reduces the detection performance of IDS. To solve the DoS intrusion detection problem in the IPv6 network environment, the lightweight KNN optimization algorithm in machine learning is adopted. First, the double dimensionality reduction of features is achieved through the information gain rate, and discrete features with more subfeatures are selected and aggregated to further dimensionality reduction and feature dimension of the actual operation. Secondly, the information gain rate is used as the weight to optimize the sample Euclidean distance measurement. Based on the proposed measure of the reverse distance influence, the classification decision algorithm of the KNN algorithm is optimized to make the detection technology better. The effect is further improved. The experimental results show that the traditional TAD-KNN algorithm based on average distance and the GR-KNN algorithm that only optimizes the distance definition, the GR-AD-KNN algorithm can not only improve the overall detection performance in the detection of IPv6 network traffic characteristics but also for small groups of samples. As a result, classification has better detection results.


Author(s):  
Yaw Adjei Asante ◽  
Richard Essah

In network designs, the decision made when implementing dynamic routing protocols is very paramount to the speed of the network. To make the best choice of protocol to deploy, several decisions has to be considered. Usually, these decisions are made based on the performance of the routing protocol with respect to some quantitative parameters. The protocol that performs better than other protocols involved in a research is selected for routing purposes. In this research paper, performance comparison of two mixed protocols namely OSPFv3/IS-IS and RIPng/IS-IS in IPv6 network has been made. Their performances have been measured and comparison made by simulation using Riverbed Modeller Academic Edition. The objective of this paper is mainly to determine which of the mixed protocols will be more suitable to route traffic in IPv6 network. The main motivation for this paper is to find out if the difference in the routing algorithms of RIPng and IS-IS will offset and produce a better performance than a combination of two routing protocols of the same routing algorithm (thus OSPFv3 and IS-IS). To achieve this paper’s objective, the simulation was divided into two scenarios. The first scenario was an OSPFv3/IS-IS configured IPv6 network topology.  The second scenario is a copy of the first scenario but configured with RIPng/IS-IS. The two scenarios were simulated and the effect of using each of the scenarios to separately route the selected applications was measured and recorded. The performance comparison of the mixed protocols was based on the following quantitative parameters: database query response time, database query traffics received, email upload/download response time, ftp upload/download response time, ftp traffic received, http page response time, remote login response timeandIPv6 traffics dropped. The results obtained from the simulation indicated that RIPng/IS-IS scenario performed better in email download/upload response time, remote login response time, IPv6 traffics dropped and remote login response time while the mixture of OSPFv3/IS-IS performed better in database query response time, database query traffics received, ftp download/upload response time, ftp traffic received and http page response time. Hence OSPFv3/IS-IS is the better option when the choice is between RIPng/IS-IS and OSPFv3/IS-IS for most of the quantitative parameters involved in this paper. This is because the combination of RIPng and IS-IS took a longer time to converge, affecting the speed on the network scenario. The time the RIPng/IS-IS combination took to access most of the application servers is slower than that of OSPFv3/IS-IS network scenario. On the basis of database query and ftp traffics received, the simulation results showed that network configured with OSPFv3/IS-IS performs better than RIPng/IS-IS. This is because the OSPFv3/IS-IS received the highest database and ftp traffics. The mixture of OSPFv3/IS-IS sent and received more application packets because it had very high throughput values which had an effect on the total quantity of application traffics received. Although the OSPFv3/IS-IS network scenario recorded the highest database and ftp traffics, this could not affect its speed to become lower than the RIPng/IS-IS scenario.


Author(s):  
Richard Essah ◽  
Darpan Anand

A collection of interconnected devices that deal with communication protocols that are common to share resources provided by nodes of a network over digital interconnections is a computer network. The process of determining the most efficient route from a source to a given target is called routing. Cisco's Enriched Internal Routing Gateway Protocol for IPv6 and the IETF's OSPFv3 (First Version 3 of Open Shortest Path) are two of the most frequently studied IPv6 routing protocols among researchers (EIGRPv6). As a result of the popularity of EIGRPv6 and OSPFv3, it is necessary to undertake a thorough contrast of the two protocols once working inside a minor enterprise network on IPv6. Thus, the study analysed the performance comparison of OSPFV3 and EIGRP with IPv6 networks with regards to convergence time, end-to-end delay, and packet loss. Packet Tracer 6.2.2 was used to compare the performance of routing protocols of different kinds. In the simulation, Cisco routers, switches, and generic computers were employed in the test. In these topologies, standard IPv6 addresses have been used. The findings of the study revealed that EIGRPv6 outperforms OSPFv3. As a result, we advocate using EIGRPv6 as an internal routing protocol in a network of IPv6.


Author(s):  
Richard Essah ◽  
Darpan Anand

The internet protocols are increasingly imposed in recent times, there is a need to propose a study on the performance analysis on OSPFV3 and EIGRP in IPV6 application. IP is currently involved in sensitive areas of internet protocols, remote sensing, telepresence, computer networks and so on. The IP exists in two versions (IPv4 and IPv6), the difference between these two protocols is distinguished in terms of features, operation, and performance. In this study, measuring and evaluation on the performance of the two IPv4 and IPv6 protocols in the networks of communicating companies are proposed for further studies based on the literature gaps identified. The study should be performed by varying the routing protocols RIP, RIPnG, OSPF, OSPFv3, IS-IS and ISIS v6. Further studies should conduct simulation on performance analysis of OSPFV3 and EIGRP in IPV6 applications. The gaps identified after reviewing a number of literature on OSPFV3 and EIGRP with IPV6 network needs to be done since it sought to bridge gaps in literature.


Author(s):  
Neha Jain ◽  
Ashish Payal ◽  
Aarti Jain

With IPv4 addresses being exhausted, network engineers and researchers are encouraged to adopt IPv6. But before using the IPv6 network directly, engineers need to test their hardware and network performance under new conditions of IPv6 as it has an extended address, high complexity, overhead performance, and IPsec complications. As routing protocols play a crucial role in network performance, it leads to a network’s extended performance by finding the shortest path, good throughput, and lowest delay. As the specifications, viz. frame structure for IPv4 and IPv6 are entirely different, there are modified routing protocols specified for IPv6. Routing Information Protocol (RIP) and Routing Information Protocol Next Generation (RIPng) are distance vector routing protocols and use hop count as a cost. In this paper, we have used RIPng on the IPv6 addressing network and RIP on the IPv4 addressing network and then analyze and compare them on the basis of different performance parameters. For this comparison, three different applications – File Transfer Protocol (FTP), DB Query (DataBase), and electronic mail (e-mail) – are set on a network consisting of three different subnets, each having a diverse network topology. The performance parameters analyzed are global and object statistics, viz. ethernet delay, number of hops, applications response time, background traffic delay, traffic dropped, point-to-point links throughput, links utilization, and links queuing delay. The experimental results determine the strength of the routing protocols. Thus, the quantitative results give the option to choose the routing protocol according to the network scenarios. In terms of ethernet delay, traffic dropped, network convergence, and security, it is found that the RIPng_IPv6 network performs better than RIP_IPv4. RIPng_IPv6 has an ethernet delay of 2.9 milliseconds, traffic dropped of 0.29 packets/second, and network convergence of 17 seconds less than RIP_IPv4 values. However, the RIP_IPv4 network is scalable, uses less hop, and has 40 milliseconds of traffic delay, while RIPng_IPv6 has 0.40 seconds of traffic delay. RIP_IPv4 also has a better response time for all three applications, FTP as 100 milliseconds, DB as 40 milliseconds, and e-mail as 20 milliseconds which is much less than the values obtained for RIPng_IPv6 network. Therefore, according to the performance requirements, the network engineers/operators or researchers can use either the existing IPv4 network or a new IPv6 network to achieve the Quality of Service (QoS) target level.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weichuan Ni ◽  
Zhiming Xu ◽  
Jiajun Zou ◽  
Zhiping Wan ◽  
Xiaolei Zhao

The traditional IPv6 routing algorithm has problems such as network congestion, excessive energy consumption of nodes, and shortening the life cycle of the network. In response to this phenomenon, we proposed a routing optimization algorithm based on genetic ant colony in IPv6 environment. The algorithm analyzes and studies the genetic algorithm and the ant colony algorithm systematically. We use neural network to build the initial model and combine the constraints of QoS routing. We effectively integrate the genetic algorithm and ant colony algorithm that maximize their respective advantages and apply them to the IPv6 network. At the same time, in order to avoid the accumulation of a lot of pheromones by the ant colony algorithm in the later stage of the network, we have introduced an anticongestion reward and punishment mechanism. By comparing the search path with the optimal path, rewards and punishments are based on whether the network path is smooth or not. Finally, it is judged whether the result meets the condition, and the optimal solution obtained is passed to the BP neural network for training; otherwise, iterative iterations are required until the optimal solution is satisfied. The experimental results show that the algorithm can effectively adapt to the IPv6 routing requirements and can effectively solve the user’s needs for network service quality, network performance, and other aspects.


Author(s):  
Xiang Li ◽  
Baojun Liu ◽  
Xiaofeng Zheng ◽  
Haixin Duan ◽  
Qi Li ◽  
...  
Keyword(s):  

Author(s):  
Prajeesha ◽  
Kushagra Sinha ◽  
Aditya Tripathi ◽  
Naman Agarwal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document