mobile node
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 107)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 13 (21) ◽  
pp. 11743
Author(s):  
Indumathi Lakshmi Krishnan ◽  
Fadi Al-Turjman ◽  
Ramesh Sekaran ◽  
Rizwan Patan ◽  
Ching-Hsien Hsu

The Proxy Mobile IPv6 (PMIPv6) is a network-based accessibility managing protocol. Because of PMIPv6’s network-based approach, it accumulates the following additional benefits, such as discovery, efficiency. Nonetheless, PMIPv6 has inadequate sustenance for multi-homing mechanisms, since every mobility session must be handled through a different binding cache entry (BCE) at a local mobility anchor (LMA) according to the PMIPv6 specification, and thus PMIPv6 merely permits concurrent admittance for the mobile node (MN) which is present in the multi-homing concept. Consequently, when a multi-homed MN interface is detached from its admittance network, the LMA removes its moving part from the BCE, and the current flows connected with the apart interface are not transmitted to the multi-homed MN, even if a more multi-homed MN interface is still linked to another access network. A superior multi-homing support proposal is proposed to afford flawless mobility among the interfaces for a multi-homed MN to address this problem. The projected method can shift an application from a disconnected interface of a multi-home MN to an attached interface using the PMIPv6 fields of Auxiliary Advertisement of Neighbor Detection (AAND).


Author(s):  
Weijun Wang ◽  
Huafeng Wu ◽  
Xianglun Kong ◽  
Yuanyuan Zhang ◽  
Yang Ye ◽  
...  

In this paper, a novel dynamic position control (PC) approach for mobile nodes (MNs) is proposed for ocean sensor networks (OSNs) which directly utilizes a neural network to represent a PC strategy. The calculation of position estimation no longer needs to be carried out in the proposed scheme, so the localization error is eliminated. In addition, reinforcement learning is used to train the PC strategy, so that the MN can learn a more highly accurate and fast response control strategy. Moreover, to verify its applicability to the real-world environment, we conducted field experiment deployment in OSNs consisting of a MN designed by us and some fixed nodes. The experimental results demonstrate the effectiveness of our proposed control scheme with impressive improvements on PC accuracy by more than 53% and response speed by more than 15%.


2021 ◽  
Vol 11 (19) ◽  
pp. 8826
Author(s):  
Seong-Geun Kwon ◽  
Oh-Jun Kwon ◽  
Ki-Ryong Kwon ◽  
Suk-Hwan Lee

In this paper, we address a system that can accurately locate and monitor work tools in a complex assembly process, such as automotive production. Our positioning monitoring system is positioned by a combined sensor of the UWB module and the MEMS IMU (inertial measuring unit) sensor based on the extended Kalman filter. The MEMS IMU sensor provides the positioning calibration information. The proposed method incorporates IMU and UWB positioning to compensate for errors that can only occur in UWB positioning through the extended Kalman filter (EKT). This EKT is improved by the error dynamic equation derived from the sparse state-space matrix. Also, the proposed method computes the transmission time and distance between the tag and anchor of the UWB module by the TWR (two-way range) system. The tag of a mobile node, which is attached to a moving tool, measures the position of the work tool and transmits the position coordinate data to the anchor. Here, the proposed method uses the trilateration localization method by the confidence distance compensation to prevent the distance error by obstacles and changes in the indoor environment. Experimental results verified that the proposed method confirms whether a specific tool is accurately used according to the prescribed regulations and has more positioning accuracy than the conventional methods.


2021 ◽  
Vol 21 (03) ◽  
Author(s):  
Mohamed Hechmi Jeridi ◽  
Sami Elmadssia ◽  
Tahar Ezzedine

The specificities of the Internet of Things (IoT) require innovative methods to perform routing, owing to the resource limitations of network nodes. The IPv6 routing protocol for low-power and lossy networks ( RPL), as one of these pioneering methods, performs a variety of routing measurements to meet the requirements of some IoT applications, but, does not solve the problems of sudden and intense data traffic caused by the particularity of the other ones. Indeed, it has been observed that such unexpected and excessive data traffic leads to routing instability and traffic congestion in the IoT network. In order to overcome the mentioned shortcomings, we propose a common solution using the mobility of some nodes to reduce system instability and alleviate congestion on the network, to be named: use of mobile node for the Instability & Congestion Alleviation in IoT networks (mob-ICA). Therefore, our contribution consists in overcoming network instability by dynamically regulating the message transmission period to choose the parent nodes according to the speed and direction of the mobile nodes and in reducing congestion by using these nodes to locally create alternative paths to the parental node


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5731
Author(s):  
Leehter Yao ◽  
Lei Yao ◽  
Yeong-Wei Wu

Ultra-wideband (UWB) sensors have been widely applied to indoor positioning. The indoor positioning of UWB sensors usually refers to the positioning of the mobile node that interacts with the anchors through radio for calculating the distance between the mobile node and each of the surrounding anchors. The positioning accuracy of the mobile node is affected by the installation positions of surrounding anchors. A mathematical model was proposed in this paper to respectively analyze the mobile node’s 2-dimensional (2D) and 3-dimensional (3D) positioning errors. The factors influencing the mobile node’s positioning errors were explored through the mathematical models. The best installation positions of surrounding anchors were obtained based on the mathematical models. The mobile node’s 2D and 3D positioning errors were reduced based on the anchor positions derived from the mathematical model. Both computer simulations and practical experiments were implemented to justify the results obtained in the mathematical models.


Author(s):  
A. Sangeetha ◽  
T. Rajendran

As the advent of new technologies grows, the deployment of mobile ad hoc networks (MANET) becomes increasingly popular in many application areas. In addition, all the nodes in MANET are battery operated and the node mobility affects the path stability and creates excessive traffic leads to higher utilization of energy, data loss which degrades the performance of routing. So, in this paper we propose Levenberg–Marquardt logistic deep neural learning based energy efficient and load balanced routing (LLDNL-EELBR) which is a machine learning method to deeply analyze the mobile nodes to calculate residual load and energy and it also uses logistic activation function to select the mobile node having higher residual energy and residual load to route the data packet. Experimental evaluations of three methods (LLDNL-EELBR, multipath battery and mobility-aware routing scheme (MBMA-OLSR) and opportunistic routing with gradient forwarding for MANETs (ORGMA)) were done and the result reveals that LLDNL-EELBR method is able to increase the through put and minimizes the delay and energy consumption in MANET when compared to works under consideration.<br /><div> </div>


Author(s):  
Bingxin Chen ◽  
Lifei Kuang ◽  
Wei He

AbstractToday with the rapid development of the information age, the exchange of science and technology has brought closer the closeness of countries, and our country has also begun to conduct in-depth research on WSN. This research mainly discusses the computer simulation algorithm of gymnastics formation change path based on wireless sensor. In this research, an improved Leader-Follower method is designed. In the research of gymnastics formation transformation of mobile nodes in the wireless sensor network environment, the traditional three types of nodes are divided into four categories according to the different formation responsibilities, namely, coordinator, beacon node, master mobile node (Leader), slave mobile node (Follower). After it accurately locates itself with the help of the information of the beacon node, the information should be sent out in the form of broadcast, and the coordinator sends the information to the host computer through the serial port for tracking display. In order to enable the mobile nodes in the network to keep the current gymnastic formation moving toward the target point after completing the gymnastic formation transformation, this paper uses the l-φ closed-loop control method to modify the gymnastic formation in real time. The method based on the received signal strength is selected to realize the positioning of the beacon node to the mobile node, and combined with the positioning engine in the core processor CC2431 of the mobile node, efficient and low-energy wireless positioning can be realized. Multiple mobile nodes coordinate with each other to control communication between each node in a wireless manner, and sense their own heading angle information through geomagnetic sensors, so as to make judgments and adjustments on the maintenance and transformation of the current gymnastics formation. During the formation change, after analysis, it is concluded that the maximum offset of Follower2 from the ideal path in the process of traveling to the desired position in the triangular queue is + 0.28 m. This research effectively realized the computer simulation of autonomous formation.


2021 ◽  
Author(s):  
Diniesh VC ◽  
Murugesan G

Abstract Mobile wireless sensor networks (MWSNs) have become a foremost solution in many emerging applications both in industry and academia. Moreover, considering the mobile node in WSN is a challenging task to designing efficient communication protocols, specifically at a medium access control (MAC) layer. Most of the existing protocols consider only for static and slow mobility. To meet with future MIoT applications, in this paper we propose Enhanced Energy Efficient Mobility aware MAC (EMM-MAC) protocol. Our EMM-MAC protocol consists of 3 contributions i) static synchronization and mobility handling phase to support both environments, ii) By using queue length-based channel access priority for static nodes, and iii) the combined highest signal strength and node status-based channel access priority for mobile nodes without any control packet overhead. The simulation results verify that EMM-MAC yields a notable improvement in the average power consumption, packet latency, and packet delivery ratio performances against the well-known mobility-aware MAC protocols under different mobility models and environments.


Author(s):  
Pawan ◽  
Susheela Hooda

Wireless ad-hoc networks have become the most vibrant and vital area of research over the past years. Most devices in MANET are power operated. Therefore, the need of the hour is to design a protocol that will not only saves the battery life but also increase the lifetime of participating nodes in the ad-hoc network. In this paper, a new power-aware routing protocol has been proposed which selects the best gateway node for sending the data packets from source to destination. Additionally, the proposed routing protocol extends the battery lifetime of a mobile node and also minimizes the power consumption of an entire network. Moreover, this paper also presents an experimental evaluation of the proposed routing protocol by using three parameters (remaining power path, remaining battery power, and hop count) and provide the best path.


Sign in / Sign up

Export Citation Format

Share Document