scholarly journals A lower bound on the number of triangulations of planar point sets

2004 ◽  
Vol 29 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Oswin Aichholzer ◽  
Ferran Hurtado ◽  
Marc Noy
Keyword(s):  
10.37236/484 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ondřej Bílka ◽  
Kevin Buchin ◽  
Radoslav Fulek ◽  
Masashi Kiyomi ◽  
Yoshio Okamoto ◽  
...  

Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets $P$ and $Q$ with $|P| = m$ and $|Q| = n$. They proved that $M(m,n)=O(m^{2/3}n^{2/3}+m+n)$, and asked whether a superlinear lower bound exists for $M(n,n)$. In this note, we show that their upper bound is the best possible apart from constant factors.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2021 ◽  
Vol 386 ◽  
pp. 107779
Author(s):  
János Pach ◽  
Natan Rubin ◽  
Gábor Tardos
Keyword(s):  

2007 ◽  
Vol 17 (04) ◽  
pp. 297-304 ◽  
Author(s):  
OLIVIER DEVILLERS ◽  
VIDA DUJMOVIĆ ◽  
HAZEL EVERETT ◽  
SAMUEL HORNUS ◽  
SUE WHITESIDES ◽  
...  

Given a set of n points in the plane, we consider the problem of computing the circular ordering of the points about a viewpoint q and efficiently maintaining this ordering information as q moves. In linear space, and after O(n log n) preprocessing time, our solution maintains the view at a cost of O( log n) amortized time (resp.O( log 2 n) worst case time) for each change. Our algorithm can also be used to maintain the set of points sorted according to their distance to q .


1996 ◽  
Vol 3 (9) ◽  
Author(s):  
Thore Husfeldt ◽  
Theis Rauhe ◽  
Søren Skyum

We give a number of new lower bounds in the cell probe model<br />with logarithmic cell size, which entails the same bounds on the random access computer with logarithmic word size and unit cost operations. We study the signed prefix sum problem: given a string of length n of zeroes and signed ones, compute the sum of its ith prefix during updates. We show a<br />lower bound of  Omega(log n/log log n) time per operations, even if the prefix sums are bounded by log n/log log n during all updates. We also show that if the update time is bounded by the product of the worst-case update time and the<br />answer to the query, then the update time must be Omega(sqrt(log n/ log log n)).<br /> These results allow us to prove lower bounds for a variety of seemingly unrelated<br />dynamic problems. We give a lower bound for the dynamic planar point location in monotone subdivisions of <br />Omega(log n/ log log n) per operation. We give<br />a lower bound for the dynamic transitive closure problem on upward planar graphs with one source and one sink of <br />Omega(log n/(log logn)^2) per operation. We give a lower bound of  Omega(sqrt(log n/log log n)) for the dynamic membership problem of any Dyck language with two or more letters. This implies the same<br />lower bound for the dynamic word problem for the free group with k generators. We also give lower bounds for the dynamic prefix majority and prefix equality problems.


2002 ◽  
Vol 12 (05) ◽  
pp. 429-443 ◽  
Author(s):  
NAOKI KATOH ◽  
HISAO TAMAKI ◽  
TAKESHI TOKUYAMA

We give an optimal bound on the number of transitions of the minimum weight base of an integer valued parametric polymatroid. This generalizes and unifies Tamal Dey's O(k1/3 n) upper bound on the number of k-sets (and the complexity of the k-level of a straight-line arrangement), David Eppstein's lower bound on the number of transitions of the minimum weight base of a parametric matroid, and also the Θ(kn) bound on the complexity of the at-most-k level (the union of i-levels for i = 1,2,…,k) of a straight-line arrangement. As applications, we improve Welzl's upper bound on the sum of the complexities of multiple levels, and apply this bound to the number of different equal-sized-bucketings of a planar point set with parallel partition lines. We also consider an application to a special parametric transportation problem.


Sign in / Sign up

Export Citation Format

Share Document