Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy

2013 ◽  
Vol 79 ◽  
pp. 540-546 ◽  
Author(s):  
Gao-qiang Chen ◽  
Qing-yu Shi ◽  
Yu-jia Li ◽  
Yan-jun Sun ◽  
Qi-lei Dai ◽  
...  
2016 ◽  
Vol 29 (9) ◽  
pp. 869-883 ◽  
Author(s):  
Saad B. Aziz ◽  
Mohammad W. Dewan ◽  
Daniel J. Huggett ◽  
Muhammad A. Wahab ◽  
Ayman M. Okeil ◽  
...  

Author(s):  
Xun Liu ◽  
Gaoqiang Chen ◽  
Jun Ni ◽  
Zhili Feng

A coupled thermal–mechanical model based on the Eulerian formulation is developed for the steady-state dissimilar friction stir welding (FSW) process. Multiple phase flow theories are adopted in deriving analytical formulations, which are further implemented into the fluent software for computational fluid dynamics analysis. A shear stress boundary at the tool/workpiece interface yields a much more reasonable material distribution compared with a velocity boundary condition when the involved two materials have quite different physical and mechanical properties. The model can capture the feature of embedded steel strip in aluminum side, as observed in weld cross sections from experiments. For further evaluation, the calculated flow and thermal response are compared with experimental results in three welding conditions, which generally show good agreements.


Author(s):  
Chenyu Zhao ◽  
Xun Liu ◽  
Wei Zhang ◽  
Weiyu Cao

Abstract Self-reacting friction stir welding (SRFSW) is an advanced variant of friction stir welding (FSW) and shows several superiorities with the double-sided tool configuration. Despite the considerable amount of experimental studies in this field, most of the tool development efforts are still empirical and resort to trial-and-error solutions. To reveal effects of tool features on process physics and guide tool designs, in this study, a multi-physics SRFSW process model is developed within the framework of computational fluid dynamics (CFD). A shear stress boundary condition is applied at the tool-workpiece contact interface. First, the velocity distribution at weld cross section are calculated and the results show that the threads on the pin contribute to the enhancement of stirring effect. Second, the temperature evolutions at advancing side (AS) and retreating side (RS) are compared, and position in RS has higher temperature than position in AS accordingly. Finally, the plastic strain distribution behind pin tool is calculated by integrating effective stain rate along pathlines. The result shows that AS has a more definable strain boundary than RS, which corresponds to the general macroscopic observations in SRFSW. The results may provide a reference on SRFSW tool design.


Sign in / Sign up

Export Citation Format

Share Document