Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method

2015 ◽  
Vol 100 ◽  
pp. 2-7 ◽  
Author(s):  
Dong Jun Lee ◽  
Jai Myun Jung ◽  
Marat I. Latypov ◽  
Byounggab Lee ◽  
Jiwon Jeong ◽  
...  
Author(s):  
D. Liu ◽  
S. Koric ◽  
A. Kontsos

Direct numerical simulations (DNS) of knitted textile mechanical behavior are for the first time conducted on high performance computing (HPC) using both the explicit and implicit finite element analysis (FEA) to directly assess effective ways to model the behavior of such complex material systems. Yarn-level models including interyarn interactions are used as a benchmark computational problem to enable direct comparison in terms of computational efficiency between explicit and implicit methods. The need for such comparison stems from both a significant increase in the degrees-of-freedom (DOFs) with increasing size of the computational models considered as well as from memory and numerical stability issues due to the highly complex three-dimensional (3D) mechanical behavior of such 3D architectured materials. Mesh and size dependency, as well as parallelization in an HPC environment are investigated. The results demonstrate a satisfying accuracy combined with higher computational efficiency and much less memory requirements for the explicit method, which could be leveraged in modeling and design of such novel materials.


2017 ◽  
Vol 752 ◽  
pp. 11-17
Author(s):  
Florin Baciu ◽  
Aurelia Rusu-Casandra ◽  
Claudia Bratosin

The management of traumatic dental caries in primary teeth has the main objective to avoid their consequences that can affect the immediate and longterm quality of life of the child. Aggressive forms of decays can develop on smooth surfaces of teeth and progress rapidly, the effect being detrimental on the dentition. The objective of this study was to compare the stress and displacement distributions in the models of two assemblies by means of the three-dimensional finite element analysis: deciduous maxillary lateral incisor - restorative filling – bone structure and deciduous mandibular lateral incisor – restorative filling – bone structure respectively. Both models were subjected to a 120 N static load applied on the upper surface. The models were built from computed-tomography scans. Two different restorative dental materials were considered. In addition, the results obtained were compared with previous research of the authors, i.e. the mechanical behavior of a deciduous restored molar and deciduous restored canine respectively. As a result of the study, it can be concluded that the biomechanical analysis of deciduous dental caries is a valuable aid in enabling the dentist to make correct and effective treatment decisions.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document