dental materials
Recently Published Documents


TOTAL DOCUMENTS

2072
(FIVE YEARS 432)

H-INDEX

59
(FIVE YEARS 10)

2022 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Tomas Vilde ◽  
Cameron A. Stewart ◽  
Yoav Finer

Despite their popularity, resin composite restorations fail earlier and at higher rates than comparable amalgam restorations. One of the reasons for these rates of failure are the properties of current dental bonding agents. Modern bonding agents are vulnerable to gradual chemical and mechanical degradation from a number of avenues such as daily use in chewing, catalytic hydrolysis facilitated by salivary or bacterial enzymes, and thermal fluctuations. These stressors have been found to work synergistically, all contributing to the deterioration and eventual failure of the hybrid layer. Due to the expense and difficulty in conducting in vivo experiments, in vitro protocols meant to accurately simulate the oral environment’s stressors are important in the development of bonding agents and materials that are more resistant to these processes of degradation. This narrative review serves to summarize the currently employed methods of aging dental materials and critically appraise them in the context of our knowledge of the oral environment’s parameters.


2022 ◽  
Vol 8 ◽  
Author(s):  
Christopher J. Pearce ◽  
Nicky Brooks

Background:Caries of the infundibula of equine cheek teeth can lead to significant dental disease including increased attritional wear, pulpar and apical disease, secondary sinusitis, and dental fracture. Restorations of cavities of equine cheek teeth infundibula have been performed since 1889. Recent advances in dental materials, instrumentation, and techniques have facilitated the use of dental restoration techniques by equine veterinary practitioners. No studies to date have demonstrated the safety or efficacy of restorations of equine cheek teeth infundibula.Objectives:To assess the long-term results of restorations of equine cheek teeth affected by infundibular caries, to report on the safety of the procedure, and to give guidelines for future restorative therapies.Study Design:Retrospective analysis of results of clinical and oroscopic examination of horses that underwent infundibular restoration procedures between 2006 and 2017.Methods:A total of 223 infundibula in 185 maxillary cheek teeth in 92 horses were restored using a variety of dental materials including glass ionomer cement, flowable and compactible resin composites. The time between restoration and re-examination was recorded along with findings of clinical signs in the interim, restorative material loss, and any further pathological changes of the teeth including caries progression, fracture, or apical disease. Follow-up examinations were performed over two study periods 2006–2012 and in 2017.Results:Over the full study period, 99% of treated horses available for follow-up examinations had no adverse clinical signs or developed any abnormalities of restored teeth observable on oroscopic examination. Of horses re-examined, 83% of restorations were shown to have minimal or no loss of the restoration material, with occlusal surface wear visibly comparable to other adjacent maxillary teeth. Statistical analysis showed success of the procedure was related to the restorative material used, the restoration technique, and the caries grade present at the time of restoration (grade 2 is more successful than grade 3).Main Limitations:There are no case controls in this study and therefore it is not clear if restoration of equine infundibula is a consistently beneficial procedure, or at which grade of caries progression restorations should be performed for optimum benefit. The procedures were not re-examined at consistent regular times creating some difficulties in standardizing results. Re-examinations of treated horses did not consistently include radiography or computed tomography and therefore some apical changes may have occurred in treated teeth without visual oroscopic or external clinical signs.Conclusion:Restoration of equine infundibula using materials developed for human dentistry including flowable resin composites is a safe and long-lasting procedure and appears to prevent the development of further pathological changes including apical infection and dental fracture.


2022 ◽  
Vol 23 (2) ◽  
pp. 745
Author(s):  
Andrzej Malysa ◽  
Joanna Wezgowiec ◽  
Wojciech Grzebieluch ◽  
Dariusz P. Danel ◽  
Mieszko Wieckiewicz

The aim of the study was to evaluate the influence of thermocycling on the shear bond strength of self-adhesive, self-etching resin cements luted to human dentin and computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics. Three modern self-adhesive dental cements (Maxcem Elite, RelyX U200, Panavia SA) were used to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. One conventional cement (Panavia V5) served as a control. After preparation, the samples were subjected to thermocycling as a method of artificial aging of dental materials applied to simulate long-term use in oral conditions. Shear bond strength was evaluated according to PN-EN ISO 29022:2013-10 and failure modes were observed under a light microscope. Statistical analysis was performed. The study demonstrated that a combination of ceramics and cements directly impacts the bond strength. The highest bond strength was observed in Panavia V5, lower in Panavia SA and Maxcem Elite and the lowest–in RelyX U200. Adhesive failure between human dentin and cements was the most common failure mode. Moreover, thermocycling highly decreased bond strength of self-adhesive, self-etching cements.


Author(s):  
Andrej Thurzo ◽  
Viera Jančovičová ◽  
Miroslav Hain ◽  
Milan Thurzo ◽  
Bohuslav Novák ◽  
...  

(1) Human teeth are the most resilient tissues in the body. However, exposure to concentrated acids might lead to their obliteration, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper introduces novel method of 3D reconstruction of dental patterns as a crucial step for digital identification with dental records.; (2) With combination of modern methods of Micro-Computed Tomography, Cone Beam Computed Tomography, Attenuated Total Reflection in conjunction with Fourier-Transform Infrared Spectroscopy and Artificial Intelligence Convolutional Neural Network algorithms, the paper presents the way of 3D dental pattern reconstruction and human remains identification. Research studies morphology of teeth, bone and dental materials (Amalgam, Composite, Glass-ionomer cement) under different periods of exposure to 75% sulfuric acid; (3) Results reveal significant volume loss in bone, enamel, dentine and as well glass-ionomer cement. Results also reveal significant resistance of composite and amalgam dental materials to sulfuric acid impact, thus serving as strong parts in the dental pattern mosaic. Paper also introduces probably first successful artificial intelligence application in automated forensic CBCT segmentation.; (4) Interdisciplinary cooperation utilizing mentioned technologies can solve problem of human remains identification with 3D reconstruction of dental patterns and their 2D projections over existing ante-mortem records.


2022 ◽  
Vol 12 (2) ◽  
pp. 551
Author(s):  
Andrea Scribante ◽  
Simone Gallo ◽  
Maurizio Pascadopoli ◽  
Pietro Canzi ◽  
Stefania Marconi ◽  
...  

In the last years, both medicine and dentistry have come across a revolution represented by the introduction of more and more digital technologies for both diagnostic and therapeutic purposes. Additive manufacturing is a relatively new technology consisting of a computer-aided design and computer-aided manufacturing (CAD/CAM) workflow, which allows the substitution of many materials with digital data. This process requires three fundamental steps represented by the digitalization of an item through a scanner, the editing of the data acquired using a software, and the manufacturing technology to transform the digital data into a final product, respectively. This narrative review aims to discuss the recent introduction in dentistry of the abovementioned digital workflow. The main advantages and disadvantages of the process will be discussed, along with a brief description of the possible applications on orthodontics.


Author(s):  
Da Bin Lee ◽  
Boaz Arzi ◽  
Philip H. Kass ◽  
Frank J. M. Verstraete

Abstract OBJECTIVE To evaluate the radiographic outcome of root canal treatment (RCT) in dogs and compare outcomes with those reported for a previous study performed at the same institution in 2002. ANIMALS 204 dogs representing 281 teeth that underwent RCT. PROCEDURES The medical record database of a veterinary teaching hospital was searched to identify dogs that underwent RCT between 2001 and 2018. Only dogs that had undergone at least 1 radiographic recheck appointment a minimum of 50 days after RCT were included in the study. Dental radiographs were reviewed. Treatment was considered successful if the periapical periodontal ligament space was within reference limits and preexisting external inflammatory root resorption (EIRR), if present, had stabilized. Treatment was considered to show no evidence of failure (NEF) if preoperative EIRR had stabilized and any preoperative periapical lucency (PAL) remained the same or had decreased in size but had not completely resolved. Treatment was considered to have failed if EIRR or a PAL developed after RCT, if a preoperative PAL increased in size, or if preexisting EIRR progressed. RESULTS Follow-up time ranged from 52 to 3,245 days (mean, 437 days). RCT was classified as successful for 199 (71%) teeth, NEF for 71 (25%) teeth, and failed for 11 (4%) teeth. CONCLUSIONS AND CLINICAL RELEVANCE Results showed that almost 2 decades after RCT outcome in dogs was first evaluated, during which time numerous advances in dental materials and techniques had been made, the success rate of RCT was virtually unchanged.


2022 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Inês Francisco ◽  
Raquel Travassos ◽  
Catarina Nunes ◽  
Madalena Ribeiro ◽  
Filipa Marques ◽  
...  

Background: There has been an increase in demand for orthodontic treatment within the adult population, who likely receive restorative treatments using ceramic structures. The current state of the art regarding the most effective method to achieve an appropriate bond strength of brackets on ceramic surfaces isn’t consensual. This systematic review aims to compare the available surface treatments to ceramics and determine the one that allows to obtain the best bond strength. Methods: This systematic review followed the PRISMA guidelines and the PICO methodology was used, with the question “What is the most effective technique for bonding brackets on ceramic crowns or veneers?”. The research was carried out in PubMed, Web of Science, Embase and Cochrane Library databases. In vitro and ex vivo studies were included. The methodological quality was evaluated using the guidelines for reporting of preclinical studies on dental materials by Faggion Jr. Results: A total of 655 articles searched in various databases were initially scrutinized. Sevety one articles were chosen for quality analysis. The risk of bias was considered medium to high in most studies. The use of hydrofluoric acid (HF), silane and laser afforded the overall best results. HF and HF plus laser achieved significantly highest bond strength scores in felsdphatic porcelain, while laser was the best treatment in lithium disilicate ceramics. Conclusions: The most effective technique for bonding brackets on ceramic is dependent on the type of ceramic.


2022 ◽  
Author(s):  
Zuzanna Buchwald ◽  
Mariusz Sandomierski ◽  
Wojciech Smułek ◽  
Maria Ratajczak ◽  
Adam Patalas ◽  
...  

Abstract Insufficient mechanical properties of hydroxyapatite -based composites prompted the search for new and effective solutions for dental applications. To improve the mechanical properties without losing the remineralization potential, the use of hybrid fillers was proposed. The first of them was based on the formation of hydroxyapatite (HA) layer on the surface of SYLOID®244 silica. The second of the investigated fillers was created by simultaneous synthesis of nanoparticles from precursors of HA and silica. The obtained fillers were extensively characterized by spectral methods including X-ray Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray fluorescence (XRF), as well as by Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS). Tests using probiotic microorganisms were an important part of the analysis, indicating that there was no potential interaction of the materials with microflora. The tests of degree of conversion, depth of cure, opacity, sorption, solubility, flexural and compressive strength, and the remineralizing potential also showed that the composites with nano-sized silica/HA showed better mechanical properties than the composites with HA alone or commercial silica and at the same time the remineralization remained at the desired level. Thus, the proposed composite has a high application potential in the creation of implants and dental materials.


Folia Medica ◽  
2021 ◽  
Vol 63 (6) ◽  
pp. 865-874
Author(s):  
Soheil Nikpour ◽  
Atefe Saffar Shahroudi ◽  
Aida Saffarpour ◽  
Azam Akhavan ◽  
Ahmad Sodagar

Introduction: Recently, nanoparticles such as nano-TiO2 have been added to some dental materials for enhancing dental carries prevention due to their antibacterial activity. Aim: This study aimed to assess the shear bond strength of a self-adhesive composite containing TiO2 and SiO2 nanoparticles for orthodontic bracket bonding. Materials and methods: This in vitro, experimental study was done on 70 extracted human premolars divided into 7 groups. Six groups of Vertise Flow self-adhesive composite samples were prepared: without any nanoparticles, with 0.5% and 1% TiO2 nanoparticles, 0.5% and 1% SiO2 nanoparticles, and 1% mixture of TiO2 and SiO2 nanoparticles so that nano-hybrid composites were prepared. Metal brackets were bonded with these samples as well as Transbond XT as the control group. The shear bond strength of the brackets to enamel was measured using a universal testing machine. The adhesive remnant index (ARI) score was also determined by a stereomicroscope. Data were analyzed by one-way ANOVA, Tukey&rsquo;s test and Kruskal-Wallis test. Results: The shear bond strength of the groups was significantly different (p=0.000). Pairwise comparisons revealed that the bond strength of Transbond XT group was significantly higher than others (p<0.05), followed by the 1% TiO2 group with significant differences with Vertise Flow and 0.5% TiO2 groups. The lowest value belonged to Vertise Flow with no nanoparticles. The ARI scores was different in the control group (p=0.000). Conclusions: Adding TiO2 and SiO2 nanoparticles to Vertise Flow self-adhesive composite not only did not adversely affect its shear bond strength, but also slightly increased it. Overall, the self-adhesive nano-hybrid composite containing TiO2 and/or SiO2 nanoparticles, following an additional etching step would be acceptable for bracket bonding and can be used clinically to benefit from the antimicrobial activity of these nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document