scholarly journals A method to apply Piola-Kirchhoff stress in molecular statics simulation

2021 ◽  
Vol 195 ◽  
pp. 110496
Author(s):  
Arman Ghasemi ◽  
Wei Gao
Author(s):  
Serge Prudhomme ◽  
Paul T. Bauman ◽  
J. Tinsley Oden, Professor

Carbon ◽  
2018 ◽  
Vol 126 ◽  
pp. 165-175 ◽  
Author(s):  
Szymon Winczewski ◽  
Mohamad Yousef Shaheen ◽  
Jarosław Rybicki

2021 ◽  
pp. 1-26
Author(s):  
Cheng Liu

Abstract We demonstrate a technique that, under certain circumstances, will determine stresses associated with a nonuniform deformation field without knowing the detailed constitutive behavior of the deforming material. This technique is based on (1) a detailed deformation measurement of a domain and (2) the observation that for isotropic materials, the strain and the stress, which form the so-called work-conjugate pair, are co-axial, or their eigenvectors share the same direction. The particular measures for strain and stress considered are the Lagrangian strain and the second Piola-Kirchhoff stress. The deformation measurement provides the field of the principal stretch orientation θλ and since the Lagrangian strain and the second Piola-Kirchhoff stress are co-axial, the principal stress orientation θs of the second Piola-Kirchhoff stress is determined. The Cauchy stress is related to the second Piola-Kirchhoff stress through the deformation gradient tensor, which can be measured experimentally. We then show that the principal stress orientation θσ of the Cauchy stress is the sum of the principal stretch orientation θλ and the local rigid-body rotation θq, which is determinable by the deformation gradient through polar decomposition. With the principal stress orientation θσ known, the equation of equilibrium, now in terms of the two principal stresses σ1 and σ2, and θσ, can be solved numerically with appropriate traction boundary conditions. The technique is then applied to the experimental case of nonuniform deformation of a PVC sheet with a circular hole and subject to tension. Limitations and restrictions of the technique and possible extensions will be discussed.


2018 ◽  
Vol 15 ◽  
pp. 57-62
Author(s):  
Karel Mikeš ◽  
Ondřej Rokoš ◽  
Ron H. J. Peerlings

In this work, molecular statics is used to model a nanoindentation test on a two-dimensional hexagonal lattice. To this end, the QuasiContinuum (QC) method with adaptive propagation of the fully resolved domain is used to reduce the computational cost required by the full atomistic model. Three different adaptive mesh refinement criteria are introduced and tested, based on: (i) the Zienkiewicz–Zhu criterion (used for the deformation gradient), (ii) local atoms’ site energy, and (iii) local lattice disregistry. Accuracy and efficiency of individual refinement schemes are compared against the full atomistic model and obtained results are discussed.


Sign in / Sign up

Export Citation Format

Share Document