deformation gradient
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 89)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Wenjia Wang ◽  
Peter M. Clausen ◽  
Kai-Uwe Bletzinger

AbstractIn this paper, load step reduction techniques are investigated for adjoint sensitivity analysis of path-dependent nonlinear finite element systems. In particular, the focus is on finite strain elastoplasticity with typical hardening models. The aim is to reduce the computational cost in the adjoint sensitivity implementation. The adjoint sensitivity formulation is derived with the multiplicative decomposition of deformation gradient, which is applicable to finite strain elastoplasticity. Two properties of adjoint variables are investigated and theoretically proved under certain prerequisites. Based on these properties, load step reduction rules in the sensitivity analysis are discussed. The efficiency of the load step reduction and the applicability to isotropic hardening and kinematic hardening models are numerically demonstrated. Examples include a small-scale cantilever beam structure and a large-scale conrod structure under huge plastic deformations.


Author(s):  
Göran Frenning

AbstractWe demonstrate that the Delaunay-based strain definition proposed by Bagi (Mech Mater 22:165–177, 1996) for granular media can be straightforwardly translated into a particle-based numerical method for continua. This method has a number of attractive features, including linear completeness and satisfaction of the patch test, exact conservation of linear and angular momenta in the absence of external forces and torques, and anti-symmetry of the gradient vectors for any two points not both on the boundary of the computational domain. The formulation in effect relies on nodal (particle) interpolation of the deformation gradient and is therefore inherently unstable. Drawing on the analogy with granular media, a pairwise interaction between particles is included to alleviate this issue. The underlying idea is to define a local, non-affine deformation of each bond or contact, and to introduce pairwise forces via a stored-energy functional expressed in terms of the corresponding local displacements. In this manner, a generalisation of the Ganzenmüller (Comput Methods Appl Mech Eng 286:87–106, 2015) hourglass stabilisation procedure to non-central forces is obtained. The performance of the method is demonstrated in a range of problems. This work can be considered a first step towards the development of a macroscopically consistent discrete method for granular materials.


Author(s):  
Yuzhen Chen ◽  
Tianzhen Liu ◽  
Lihua Jin

Supplementary Text 1: Material modeling and characterization We used the following incompressible neo-Hookean material model to define the instantaneous constitutive behavior of the shells, = tr − 3, (S1) where W is the strain energy density function, µ is the shear modulus, F is the deformation gradient tensor. To describe the viscoelastic behavior of the shells, Prony series were used and the shear modulus µ can be expressed as = 1 − ∑ 1 − ⁄ , (S2) where µ0 is the instantaneous shear modulus, n is the number of the series terms, is the dimensionless relaxation modulus, t is the time, and τi is the relaxation time constant. Here we characterize the viscoelastic properties of the silicone rubber (Dragon SkinTM30) and urethane rubber (VytaFlexTM 20). We modeled their viscou


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 520
Author(s):  
Arezki Chabani ◽  
Ghislain Trullenque ◽  
Johanne Klee ◽  
Béatrice A. Ledésert

Scanlines constitute a robust method to better understand in 3D the fracture network variability in naturally fractured geothermal reservoirs. This study aims to characterize the spacing variability and the distribution of fracture patterns in a fracture granitic reservoir, and the impact of the major faults on fracture distribution and fluid circulation. The analogue target named the Noble Hills (NH) range is located in Death Valley (DV, USA). It is considered as an analogue of the geothermal reservoir presently exploited in the Upper Rhine Graben (Soultz-sous-Forêts, eastern of France). The methodology undertaken is based on the analyze of 10 scanlines located in the central part of the NH from fieldwork and virtual (photogrammetric models) data. Our main results reveal: (1) NE/SW, E/W, and NW/SE fracture sets are the most recorded orientations along the virtual scanlines; (2) spacing distribution within NH shows that the clustering depends on fracture orientation; and (3) a strong clustering of the fracture system was highlighted in the highly deformed zones and close to the Southern Death Valley fault zone (SDVFZ) and thrust faults. Furthermore, the fracture patterns were controlled by the structural heritage. Two major components should be considered in reservoir modeling: the deformation gradient and the proximity to the regional major faults.


2021 ◽  
Author(s):  
Kateryna Oliynyk ◽  
◽  
Matteo Ciantia ◽  

In this paper an isotropic hardening elastoplastic constitutive model for structured soils is applied to the simulation of a standard CPTu test in a saturated soft structured clay. To allow for the extreme deformations experienced by the soil during the penetration process, the model is formulated in a fully geometric non-linear setting, based on: i) the multiplicative decomposition of the deformation gradient into an elastic and a plastic part; and, ii) on the existence of a free energy function to define the elastic behaviour of the soil. The model is equipped with two bonding-related internal variables which provide a macroscopic description of the effects of clay structure. Suitable hardening laws are employed to describe the structure degradation associated to plastic deformations. The strain-softening associated to bond degradation usually leads to strain localization and consequent formation of shear bands, whose thickness is dependent on the characteristics of the microstructure (e.g, the average grain size). Standard local constitutive models are incapable of correctly capturing this phenomenon due to the lack of an internal length scale. To overcome this limitation, the model is framed using a non-local approach by adopting volume averaged values for the internal state variables. The size of the neighbourhood over which the averaging is performed (characteristic length) is a material constant related to the microstructure which controls the shear band thickness. This extension of the model has proven effective in regularizing the pathological mesh dependence of classical finite element solutions in the post-localization regime. The results of numerical simulations, conducted for different soil permeabilities and bond strengths, show that the model captures the development of plastic deformations induced by the advancement of the cone tip; the destructuration of the clay associated with such plastic deformations; the space and time evolution of pore water pressure as the cone tip advances. The possibility of modelling the CPTu tests in a rational and computationally efficient way opens a promising new perspective for their interpretation in geotechnical site investigations.


2021 ◽  
Vol 2021 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoqing Yang ◽  
Zhenya Meng ◽  
Hailin Cao

We present theoretical studies for the third-order elastic constants of Mg, Be, Ti, Zn, Zr, and Cd with a hexagonal-close-packed (HCP) structure. The method of homogeneous deformation combined with first-principles total-energy calculations is employed. The deformation gradient F i j is applied to the crystal lattice vectors r i , and the elastic strain energy can be obtained from the first-principles calculation. The second- and third-order elastic constants are extracted by a polynomial fit to the calculated energy-strain results. In order to assure the accuracy of our method, we calculated the complete set of the equilibrium lattice parameters and second-order elastic constants for Mg, Be, Ti, Zn, Zr, and Cd, and our results provide better agreement with the previous calculated and experimental values. Besides, we have calculated the pressure derivatives of SOECs related to third-order elastic constants, and high-pressure effects on elastic anisotropy, ductile-to-brittle criterion, and Vickers hardness are also investigated. The results show that the hardness model H v = 1.877 k 2 G 0.585 is more appropriate than H v = 2 k 2 G 0.585 − 3 for HCP metals under high pressure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ibrahim Ajani ◽  
Cong Lu

Purpose This paper aims to develop a mathematical method to analyze the assembly variation of the non-rigid assembly, considering the manufacturing variations and the deformation variations of the non-rigid parts during the assembly process. Design/methodology/approach First, this paper proposes a deformation gradient model, which represents the deformation variations during the assembly process by considering the forces and the self-weight of the non-rigid parts. Second, the developed deformation gradient models from the assembly process are integrated into the homogenous transformation matrix to model the deformation variations and manufacturing variations of the deformed non-rigid part. Finally, a mathematical model to analyze the assembly variation propagation is developed to predict the dimensional and geometrical variations due to the manufacturing variations and the deformation variations during the assembly process. Findings Through the case study with a crosshead non-rigid assembly, the results indicate that during the assembly process, the individual deformation values of the non-rigid parts are small. However, the cumulative deformation variations of all the non-rigid parts and the manufacturing variations present a target value (w) of −0.2837 mm as compared to a target value of −0.3995 mm when the assembly is assumed to be rigid. The difference in the target values indicates that the influence of the non-rigid part deformation variations during the assembly process on the mechanical assembly accuracy cannot be ignored. Originality/value In this paper, a deformation gradient model is proposed to obtain the deformation variations of non-rigid parts during the assembly process. The small deformation variation, which is often modeled using a finite-element method in the existing works, is modeled using the proposed deformation gradient model and integrated into the nominal dimensions. Using the deformation gradient models, the non-rigid part deformation variations can be computed and the accumulated deformation variation can be easily obtained. The assembly variation propagation model is developed to predict the accuracy of the non-rigid assembly by integrating the deformation gradient models into the homogeneous transformation matrix.


2021 ◽  
pp. 108128652110545
Author(s):  
S Kiana Naghibzadeh ◽  
Noel Walkington ◽  
Kaushik Dayal

Accretion and ablation, i.e., the addition and removal of mass at the surface, are important in a wide range of physical processes, including solidification, growth of biological tissues, environmental processes, and additive manufacturing. The description of accretion requires the addition of new continuum particles to the body, and is therefore challenging for standard continuum formulations for solids that require a reference configuration. Recent work has proposed an Eulerian approach to this problem, enabling side-stepping of the issue of constructing the reference configuration. However, this raises the complementary challenge of determining the stress response of the solid, which typically requires the deformation gradient that is not immediately available in the Eulerian formulation. To resolve this, the approach introduced the elastic deformation as an additional kinematic descriptor of the added material, and its evolution has been shown to be governed by a transport equation. In this work, the method of characteristics is applied to solve concrete simplified problems motivated by biomechanics and manufacturing. Specifically, (1) for a problem with both ablation and accretion in a fixed domain and (2) for a problem with a time-varying domain, the closed-form solution is obtained in the Eulerian framework using the method of characteristics without explicit construction of the reference configuration.


Sign in / Sign up

Export Citation Format

Share Document