scholarly journals Energy efficiency maximization by joint transmission scheduling and resource allocation in downlink NOMA cellular networks

2019 ◽  
Vol 159 ◽  
pp. 37-50 ◽  
Author(s):  
Md. Forkan Uddin
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jinsong Gui ◽  
Jianglin Liu

In millimeter wave (mmWave) communication systems, beamforming-enabled directional transmission and network densification are usually used to overcome severe signal path loss problem and improve signal coverage quality. The combination of directional transmission and network densification poses a challenge to radio access resource management. The existing work presented an effective solution for dense mmWave wireless local area networks (WLANs). However, this scheme cannot adapt to network expansion when it is applied directly to dense mmWave cellular networks. In addition, there is still room for improvement in terms of energy efficiency and throughput. Therefore, we firstly propose an efficient hierarchical beamforming training (BFT) mechanism to establish directional links, which allows all the small cell base stations (SBSs) to participate in the merging of training frames to adapt to network expansion. Then, we design a BFT information-aided radio access resource allocation algorithm to improve the downlink energy efficiency of the entire mmWave cellular network by reasonably selecting beam directions and optimizing transmission powers and beam widths. Simulation results show that the proposed hierarchical BFT mechanism has the smaller overhead of BFT than the existing BFT mechanism, and the proposed BFT information-aided radio access resource allocation algorithm outperforms the existing corresponding algorithm in terms of average energy efficiency and throughput per link.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 80
Author(s):  
Qiuqi Han ◽  
Guangyuan Zheng ◽  
Chen Xu

Device-to-Device (D2D) communications, which enable direct communication between nearby user devices over the licensed spectrum, have been considered a key technique to improve spectral efficiency and system throughput in cellular networks (CNs). However, the limited spectrum resources cannot be sufficient to support more cellular users (CUs) and D2D users to meet the growth of the traffic data in future wireless networks. Therefore, Long-Term Evolution-Unlicensed (LTE-U) and D2D-Unlicensed (D2D-U) technologies have been proposed to further enhance system capacity by extending the CUs and D2D users on the unlicensed spectrum for communications. In this paper, we consider an LTE network where the CUs and D2D users are allowed to share the unlicensed spectrum with Wi-Fi users. To maximize the sum rate of all users while guaranteeing each user’s quality of service (QoS), we jointly consider user access and resource allocation. To tackle the formulated problem, we propose a matching-iteration-based joint user access and resource allocation algorithm. Simulation results show that the proposed algorithm can significantly improve system throughput compared to the other benchmark algorithms.


Author(s):  
Sepehr Rezvani ◽  
Nader Mokari ◽  
Mohammad R. Javan ◽  
Eduard A. Jorswieck

Sign in / Sign up

Export Citation Format

Share Document