Accuracy evaluation of a 3D printing surgical guide for breast-conserving surgery using a realistic breast phantom

Author(s):  
Junhyeok Ock ◽  
Sangwook Lee ◽  
Taehun Kim ◽  
Dayeong Hong ◽  
Minkyeong Kim ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Keunbada Son ◽  
Kyu-Bok Lee

A dental implant surgical guide fabricated by 3-dimensional (3D) printing technology is widely used in clinical practice due to its convenience and fast fabrication. However, the 3D printing technology produces an incorrect guide hole due to the shrinkage of the resin materials, and in order to solve this, the guide hole is adjusted using a trimmer or a metal sleeve is attached to the guide hole. These methods can lead to another inaccuracy. The present method reports a technique to compensate for a decreased guide hole caused by shrinkage that can occur when a computer-guided implant surgical guide is fabricated with a 3D printer. The present report describes a technique to adjust the size of the guide hole using a free software program to identify the optimized guide hole size that is fabricated with the 3D printer.


2015 ◽  
Vol 43 (10) ◽  
pp. 2189-2194 ◽  
Author(s):  
Pei Shen ◽  
Jingyang Zhao ◽  
Linfeng Fan ◽  
Hanxuan Qiu ◽  
Weifeng Xu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen-Yu Wu ◽  
Aisha Alzuhair ◽  
Heejeong Kim ◽  
Jong Won Lee ◽  
Il Yong Chung ◽  
...  

Abstract Breast-conserving surgery (BCS) is performed in patients with ductal carcinoma in situ (DCIS) because of the small size of the tumor. It is essential to know the quantitative extent of the tumor before performing this precise partial resection surgery. A three-dimensional printed (3DP) breast surgical guide (BSG) was developed using information obtained from supine magnetic resonance imaging (MRI) and 3D printing technology and it was used for treating patients with breast cancer. Here, we report our experience with the application of the BSG for patients with DCIS. Patients with breast cancer who underwent BCS from July 2017 to February 2019 were included in this study. The patients underwent partial resection with a supine-MRI based 3DP-BSG. A total of 102 BCS using 3DP-BSG were conducted, and 11 cases were DCIS. The patients’ median age was 56 years (range, 38–69 years). The mean tumor diameter was 1.3 ± 0.9 cm. The median surgical time was 70 min (range, 40–88 min). All patients had tumor-free resection margins. The median distance from the tumor to the margin was 11 mm (range, 2–35 mm). Direct demarcation of the tumor extent in the breast and a pain-free procedure are the advantages of using 3DP-BSG in patients with DCIS. Trial registration: Clinical Research Information Service (CRIS) Identifier Number: KCT0002375, KCT0003043.


2019 ◽  
Author(s):  
Sueli Mukai ◽  
Eduardo Mukai ◽  
Jamil Awad Shibli DDS ◽  
GABRIELA GIRO

Abstract Objective: The aim of the present study was to evaluate the reproducibility and precision of two types of surgical guides, obtained by using 3D printing and milling methods. Methods: A virtual model was developed, which allowed the virtual design of surgical guide project that were milled (n = 10) or 3D printing (n = 10). Surgical guides were digitally oriented and overlapped on the virtual model that had generated them. For milling guides, it was used the Sirona Dentsply system, while 3D printing guides were produced at the Perfactory P4K Life Series, the EnvisionTEC's E-Guide Tint. In this way, average mismatches from the master model were determined. Moreover, coefficients of variation, root mean square deviations, and mismatches during an overlap were evaluated after obtaining individual misalignments for each guide, in order to verify the reproducibility of the guides and the precision of the methods for obtaining the guides Results: The evaluations showed that both groups presented the same degree of mismatch during overlap, with no statistically significant differences between the groups. However, the intragroup evaluation for misalignment, 3D printing surgical guides had a higher coefficient of variation than the milled guides, since a statistically significant difference was observed between groups in the RMS of the guide from the master model. Conclusions: Milling of the guides resulted in smaller misalignments from the master model.


Sign in / Sign up

Export Citation Format

Share Document