scholarly journals Deep multiple-instance learning for abnormal cell detection in cervical histopathology images

2021 ◽  
Vol 138 ◽  
pp. 104890
Author(s):  
Anabik Pal ◽  
Zhiyun Xue ◽  
Kanan Desai ◽  
Adekunbiola Aina F Banjo ◽  
Clement Akinfolarin Adepiti ◽  
...  
2021 ◽  
pp. 509-518
Author(s):  
Zipei Zhao ◽  
Fengqian Pang ◽  
Zhiwen Liu ◽  
Chuyang Ye

2020 ◽  
Vol 9 (3) ◽  
pp. 749 ◽  
Author(s):  
Tahir Mahmood ◽  
Muhammad Arsalan ◽  
Muhammad Owais ◽  
Min Beom Lee ◽  
Kang Ryoung Park

Breast cancer is the leading cause of mortality in women. Early diagnosis of breast cancer can reduce the mortality rate. In the diagnosis, the mitotic cell count is an important biomarker for predicting the aggressiveness, prognosis, and grade of breast cancer. In general, pathologists manually examine histopathology images under high-resolution microscopes for the detection of mitotic cells. However, because of the minute differences between the mitotic and normal cells, this process is tiresome, time-consuming, and subjective. To overcome these challenges, artificial-intelligence-based (AI-based) techniques have been developed which automatically detect mitotic cells in the histopathology images. Such AI techniques accelerate the diagnosis and can be used as a second-opinion system for a medical doctor. Previously, conventional image-processing techniques were used for the detection of mitotic cells, which have low accuracy and high computational cost. Therefore, a number of deep-learning techniques that demonstrate outstanding performance and low computational cost were recently developed; however, they still require improvement in terms of accuracy and reliability. Therefore, we present a multistage mitotic-cell-detection method based on Faster region convolutional neural network (Faster R-CNN) and deep CNNs. Two open datasets (international conference on pattern recognition (ICPR) 2012 and ICPR 2014 (MITOS-ATYPIA-14)) of breast cancer histopathology were used in our experiments. The experimental results showed that our method achieves the state-of-the-art results of 0.876 precision, 0.841 recall, and 0.858 F1-measure for the ICPR 2012 dataset, and 0.848 precision, 0.583 recall, and 0.691 F1-measure for the ICPR 2014 dataset, which were higher than those obtained using previous methods. Moreover, we tested the generalization capability of our technique by testing on the tumor proliferation assessment challenge 2016 (TUPAC16) dataset and found that our technique also performs well in a cross-dataset experiment which proved the generalization capability of our proposed technique.


2020 ◽  
Author(s):  
Rui Cao ◽  
Fan Yang ◽  
Si-Cong Ma ◽  
Li Liu ◽  
Yan Li ◽  
...  

ABSTRACTBackgroundMicrosatellite instability (MSI) is a negative prognostic factor for colorectal cancer (CRC) and can be used as a predictor of success for immunotherapy in pan-cancer. However, current MSI identification methods are not available for all patients. We propose an ensemble multiple instance learning (MIL)-based deep learning model to predict MSI status directly from histopathology images.DesignTwo cohorts of patients were collected, including 429 from The Cancer Genome Atlas (TCGA-COAD) and 785 from a self-collected Asian data set (Asian-CRC). The initial model was developed and validated in TCGA-COAD, and then generalized in Asian-CRC through transfer learning. The pathological signatures extracted from the model are associated with genotypes for model interpretation.ResultsA model called Ensembled Patch Likelihood Aggregation (EPLA) was developed in the TCGA-COAD training set based on two consecutive stages: patch-level prediction and WSI-level prediction. The EPLA model achieved an area-under-the -curve (AUC) of 0.8848 in the TCGA-COAD test set, which outperformed the state-of-the-art approach, and an AUC of 0.8504 in the Asian-CRC after transfer learning. Furthermore, the five pathological imaging signatures identified using the model are associated with genomic and transcriptomic profiles, which makes the MIL model interpretable. Results show that our model recognizes pathological signatures related to mutation burden, DNA repair pathways, and immunity.ConclusionOur MIL-based deep learning model can effectively predict MSI from histopathology images and are transferable to a new patient cohort. The interpretability of our model by association with genomic and transcriptomic biomarkers lays the foundation for prospective clinical research.


2004 ◽  
Author(s):  
Tong Zhao ◽  
Elliot S. Wachman ◽  
Daniel L. Farkas

2015 ◽  
Vol 5 (3-4) ◽  
pp. 179-187 ◽  
Author(s):  
Ahmad Chaddad ◽  
Camel Tanougast

Sign in / Sign up

Export Citation Format

Share Document