A novel approach of power allocation for secondary users in cognitive radio networks

2019 ◽  
Vol 75 ◽  
pp. 301-308 ◽  
Author(s):  
Amrit Mukherjee ◽  
Sagarika Choudhury ◽  
Pratik Goswami ◽  
Gezahegn Abdissa Bayessa ◽  
Sumarga K. Sah Tyagi
2020 ◽  
Vol 7 (4) ◽  
pp. 659-666
Author(s):  
H.T. Madan ◽  
Prabhugoud I. Basarkod

Non orthogonal multiple access (NOMA) in cognitive radio (CR) network has been recognized as potential solution to support the simultaneous transmission of both primary and secondary users. In addition, CR-NOMA can also be used to serve multiple secondary networks in overlay cognitive radio networks. The aim of our work is to increase the secondary user’s throughput without compromising in QoS requirements of the primary users. Our presented work analyses the performance of power domain NOMA in cognitive radio networks for both uplink and downlink scenarios. The primary aspect of the work is to investigate the impact of power allocation on spectrum efficiency and fairness performance of CR-NOMA. Objective function is to maximize the overall throughput under the QOS constraints of the users. We have derived closed form expressions for optimized power allocation coefficient(α) for CR-NOMA uplink and downlink communications. Parameters causing the channel outage, have been examined and conditions for outage probability is derived for CR-NOMA communication. Finally, we have presented the simulation results to validate the mathematical models that are developed for power allocation coefficient and outage probability.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yanyan Shen ◽  
Shuqiang Wang ◽  
Zhiming Wei

Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.


Sign in / Sign up

Export Citation Format

Share Document