secondary user
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 60)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110586
Author(s):  
Chu Ji ◽  
Qi Zhu

Spectrum sensing is the key technology of cognitive radio. In this article, we apply blockchain technology in spectrum sensing process and propose a related algorithm based on reputation. The algorithm builds a system model based on smart contract in blockchain and applies blockchain asymmetric encryption algorithm and digital signature technology in the process of secondary users’ transmitting local judgments to the secondary user base station. The algorithm can resist spectrum sensing data falsification (SSDF) attack launched by malicious users. This article comprehensively considers the channel error rate, detection probability, secondary user base station budget and remaining energy of the secondary users (SUs) and then establishes the SU’s utility function as well as the game model. By solving the Nash equilibrium, the SU determines whether it uploads sensing data. Finally, the SU base station selects registered SUs by calculating and updating their reputation, obtaining the final judgment by voting rule. With simulations, we prove that the algorithm proposed in this article increases the accuracy and security of spectrum sensing and can effectively resist SSDF attack.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Vijaya Saradhi ◽  
Swetha Katragadda ◽  
Hima Bindu Valiveti

PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.


2021 ◽  
Vol 22 (2) ◽  
pp. 161-167
Author(s):  
Chilakala Sudhamani

In cognitive radio networks spectrum sensing plays a vital role to identify the presence or absence of the primary user. In conventional spectrum sensing one secondary user will make a final decision regarding the availability of licensed spectrum. But Secondary user fail to make a correct detection about the presence of the primary user if he is in fading environment and it causes interference to the licensed users. Therefore to avoid interference to the licensed users and to make correct detection, number of samples is increased, Which increases the probability of detection. In this paper the optimization of samples is proposed to reduce the system overhead and also to increase the propagation time. Simulation results show the optimized value of samples for a given probability of false alarm and also the variation of probability of detection with optimized samples and false alarm is shown in the results. ABSTRAK: Dalam rangkaian radio kognitif, penginderaan spektrum memainkan peranan penting untuk mengenal pasti kehadiran atau ketiadaan pengguna utama. Dalam penginderaan spektrum konvensional, seorang pengguna sekunder akan membuat keputusan akhir mengenai ketersediaan spektrum berlesen. Tetapi pengguna Sekunder gagal membuat pengesanan yang betul mengenai kehadiran pengguna utama jika dia berada dalam persekitaran yang pudar dan menyebabkan gangguan kepada pengguna yang berlesen. Oleh itu untuk mengelakkan gangguan kepada pengguna berlesen dan membuat pengesanan yang betul, jumlah sampel meningkat, yang meningkatkan kemungkinan pengesanan. Dalam makalah ini pengoptimuman sampel dicadangkan untuk mengurangi overhead sistem dan juga untuk meningkatkan waktu penyebaran. Hasil simulasi menunjukkan nilai sampel yang dioptimumkan untuk kebarangkalian penggera palsu dan juga variasi kebarangkalian pengesanan dengan sampel yang dioptimumkan dan penggera palsu ditunjukkan dalam hasil.


2021 ◽  
Vol 38 (3) ◽  
pp. 739-745
Author(s):  
Anitha Bujunuru ◽  
Srinivasulu Tadisetty

In cognitive radio, throughput of secondary user (SU) will depend on spectrum sensing performance and available power of secondary user to transmits data. As the secondary user dissipates energy for spectrum sensing operation and to maintain cooperation among multiple SUs can results in reduction of transmission power. To compensate this energy, an energy harvesting technique has introduced in cognitive radio by which SU can harvest energy from primary (PU) signal and this harvested energy will be utilized to transmit its data and increases the lifetime. In a traditional Energy Harvesting Cognitive Radio Network (EHCRN), SU can perform sensing and harvesting in separate slots which decrease the transmission time of secondary user results in reduction in throughput. To enhance the throughput of secondary user, a parallel operation of spectrum sensing and energy harvesting has been discussed. This parallel operation results in reduction of energy consumption and increases harvested energy that makes more energy to be available for transmission, which results in an increase of SU throughput. Simulation results using MATLAB shows that the proposed Parallel Sensing and Energy Harvesting CRN have improved the throughput compared to Traditional Energy Harvesting CRN and are analyzed with different parameters.


2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.


2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.


Sign in / Sign up

Export Citation Format

Share Document