High accuracy flow simulations: Advances and challenges for future needs in aeronautics

2011 ◽  
Vol 43 (1) ◽  
pp. 90-97 ◽  
Author(s):  
T.-H. Lê ◽  
J.-M. Le Gouez ◽  
E. Garnier
2014 ◽  
Vol 25 (12) ◽  
pp. 1441003 ◽  
Author(s):  
Andrea Montessori ◽  
Michele La Rocca ◽  
Giacomo Falcucci ◽  
Sauro Succi

The regularized lattice BGK (RLBGK) is validated against high-accuracy spectral Chebyshev methods for lid-driven cavity flows. RLBGK is shown to provide a viable alternative to standard lattice BGK schemes, with significant enhancement of numerical stability at a very moderate computational extra-cost.


2008 ◽  
Vol 06 (01) ◽  
pp. 23-49 ◽  
Author(s):  
WILLIAM LAYTON ◽  
ROGER LEWANDOWSKI

In 1934, J. Leray proposed a regularization of the Navier–Stokes equations whose limits were weak solutions of the Navier–Stokes equations. Recently, a modification of the Leray model, called the Leray-alpha model, has attracted interest for turbulent flow simulations. One common drawback of the Leray type regularizations is their low accuracy. Increasing the accuracy of a simulation based on a Leray regularization requires cutting the averaging radius, i.e. remeshing and resolving on finer meshes. This article analyzes on a family of Leray type models of arbitrarily high orders of accuracy for a fixed averaging radius. We establish the basic theory of the entire family including limiting behavior as the averaging radius decreases to zero (a simple extension of results known for the Leray model). We also give a more technically interesting result on the limit as the order of the models increases with a fixed averaging radius. Because of this property, increasing the accuracy of the model is potentially cheaper than decreasing the averaging radius (or meshwidth) and high order models are doubly interesting.


Author(s):  
M. Nishigaki ◽  
S. Katagiri ◽  
H. Kimura ◽  
B. Tadano

The high voltage electron microscope has many advantageous features in comparison with the ordinary electron microscope. They are a higher penetrating efficiency of the electron, low chromatic aberration, high accuracy of the selected area diffraction and so on. Thus, the high voltage electron microscope becomes an indispensable instrument for the metallurgical, polymer and biological specimen studies. The application of the instrument involves today not only basic research but routine survey in the various fields. Particularly for the latter purpose, the performance, maintenance and reliability of the microscope should be same as those of commercial ones. The authors completed a 500 kV electron microscope in 1964 and a 1,000 kV one in 1966 taking these points into consideration. The construction of our 1,000 kV electron microscope is described below.


Author(s):  
Barbara S. Minsker ◽  
Charles Davis ◽  
David Dougherty ◽  
Gus Williams

Sign in / Sign up

Export Citation Format

Share Document