scholarly journals Lattice-Boltzmann lattice-spring simulations of two flexible fibers settling in moderate Reynolds number flows

2018 ◽  
Vol 167 ◽  
pp. 341-358
Author(s):  
Ahmed Abdulkareem Alhasan ◽  
Ye Luo ◽  
Tai-Hsien Wu ◽  
Guowei He ◽  
Dewei Qi
2011 ◽  
Vol 48 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Yingming Liu ◽  
Tai-Hsiung Wu ◽  
Rurng-Sheng Guo ◽  
Yi-Hsuan Lee ◽  
Dewei Qi

AIAA Journal ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Jo-Einar Emblemsvag ◽  
Ryuta Suzuki ◽  
Graham V. Candler

Author(s):  
Jannette B. Frandsen

In this paper, the suitability of a mesoscopic approach involving a single phase Lattice Boltzmann (LB) model is examined. In contrast, to continuum based numerical models, where only space and time are discrete, the discrete variables of the LB model are space, time and particle velocity. With reference to the Boltzmann equation of classical kinetic theory, the distribution of fluid molecules is represented by particle distribution functions. The LB method simulates fluid flow by tracking particle distributions. It is notable that the formulation avoids the need to include the Poisson equation. An elastic-collision scheme with no-slip walls is prescribed. The central idea behind proposing the present formulation is many fold. One goal is to capture smaller scales naturally, postponing the need of applying empirical turbulence models. Another goal is to get further insight into nonlinearities in steep and breaking free surfaces to improve current continuum mechanics solutions. Although the long term goal is to predict bluff-body high Reynolds number flows and breaking water waves, the present study is limited to laminar flow simulations and continuous free surfaces. The case studies presented include bluff bodies embedded in Reynolds number flows in the order of 100–200. The free surface test cases represent bore propagation past a single and multiple structures. The 2-D uniform grid solutions are compared with findings reported in the literature. Vortex patterns are studied when single or several objects are located in the bluff-body wakes. From a mitigation point of view, the model presents an easy means of re-arranging bluff bodies to study optimum solutions for VIV suppression with/without a free surface.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950028 ◽  
Author(s):  
N. M. Sangtani Lakhwani ◽  
F. C. G. A. Nicolleau ◽  
W. Brevis

Lattice Boltzmann Method (LBM) simulations for turbulent flows over fractal and non-fractal obstacles are presented. The wake hydrodynamics are compared and discussed in terms of flow relaxation, Strouhal numbers and wake length for different Reynolds numbers. Three obstacle topologies are studied, Solid (SS), Porous Regular (PR) and Porous Fractal (FR). In particular, we observe that the oscillation present in the case of the solid square can be annihilated or only pushed downstream depending on the topology of the porous obstacle. The LBM is implemented over a range of four Reynolds numbers from 12,352 to 49,410. The suitability of LBM for these high Reynolds number cases is studied. Its results are compared to available experimental data and published literature. Compelling agreements between all three tested obstacles show a significant validation of LBM as a tool to investigate high Reynolds number flows in complex geometries. This is particularly important as the LBM method is much less time consuming than a classical Navier–Stokes equation-based computing method and high Reynolds numbers need to be achieved with enough details (i.e., resolution) to predict for example canopy flows.


Sign in / Sign up

Export Citation Format

Share Document