Discontinuous deformation analysis of super section tunnel surrounding rock stability based on joint distribution simulation

2017 ◽  
Vol 91 ◽  
pp. 218-229 ◽  
Author(s):  
Peng He ◽  
Shu-cai Li ◽  
Li-ping Li ◽  
Qian-qing Zhang ◽  
Fei Xu ◽  
...  
2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878208
Author(s):  
Jihong Wei ◽  
Jin Liu ◽  
Zezhuo Song ◽  
Yulong Zhu ◽  
Yuxia Bai

The rock mass has special properties, such as inhomogeneity, anisotropy, discontinuity, and nonelastic, due to various internal or external stress in the process of its formation. In this study, similar materials are considered to simulate the rock mass and analyze the failure law using laboratory tri-axial tests based on the similarity principle. The rock mass and discontinuity are constituted in the process of model construction by considering the influence of the orientation, spacing, and number of discontinuity, respectively. Then, the influences of the orientation, spacing, number of discontinuity, and the combination of different discontinuous strength on rupture mechanism of the rock mass are analyzed by considering lots of numerical test schemes using the discontinuous deformation analysis method. Finally, considering water conveyance tunnel in Jurong Pumped Storage Power Station in China as a test case, the tunnel stability under different discontinuities combination is analyzed using discontinuous deformation analysis method. The influence of the optimal tunnel axis and tunnel shape on the stability of surrounding rock is studied by comparative analysis of surrounding rock stability under different tunnel axis and tunnel shapes. The stress concentration in case of the circular tunnel with corner is somehow less than that of the rectangular one.


2014 ◽  
Vol 919-921 ◽  
pp. 735-739
Author(s):  
Hai Ping Ma ◽  
Li Ge Wang ◽  
Xue Wei Li

In order to analyze the stability of surrounding rocks with two groups parallel joints under different angles, a new method, DDARF (discontinuous deformation analysis for rock failure) program was adopted to investigate three cases of uniaxial compression tests of two groups parallel joints sample with the angels 30, 45 and 60. The results show the sample with 30 is least prone to be destroyed and the sample with 60 are most likely to be destroyed. Then DDARF program was also applied to investigate the underground cavern excavation process of two groups parallel joints surrounding rocks with the angels 30, 45 and 60. The results show that the stability of underground cavern with joint angel of 60 is worst in the aspect of stability.


2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document