compression tests
Recently Published Documents





2022 ◽  
Vol 892 ◽  
pp. 162043
Shengyuan Peng ◽  
Ke Jin ◽  
Xin Yi ◽  
Zhaohui Dong ◽  
Xun Guo ◽  

Jayant Kumar Dahre

Abstract: This Paper describes the beneficial impact of reinforcing the sub-grade layer with a single layerof geo-grid at different positions and thereby determination of optimum position of reinforcement layer. The( best) optimum position was determined based on California Bearing Ratio (CBR value) and unconfined compression tests were conducted to decide the optimum position of geo-grid. The CBR value of a soil increases by 50-100% when it is reinforced with a single layer of geogrid. The amount of development (Improvement) depends upon the type of soil and position of geo-grid. CBR of sub-grade soil is 6.53% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 19.66%. Soaked Condition CBR of sub-grade soil is 4.77% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 4.46%. Keywords: Pavement, Geo-grid, Reinforced, Sub-grade, CBR, Filtration, Reinforcing

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Yang Wei ◽  
Yang Xu ◽  
Gaofei Wang ◽  
Xunyu Cheng ◽  
Guofen Li

Axial compression tests were carried out on 72 FRP (fiber reinforced polymer)–stirrup composite−confined concrete columns. Stirrups ensure the residual bearing capacity and ductility after the FRP fractures. To reduce the effect of stress concentration at the corners of the confined square−section concrete columns and improve the restraint effect, an FRP–stirrup composite−confined concrete structure with rounded corners is proposed. Different corner radii of the stirrup and outer FRP were designed, and the corner radius of the stirrup was adjusted accurately to meet the designed corner radius of the outer FRP. The cross−section of the specimens gradually changed from square to circular as the corner radius increased. The influence of the cross−sectional shape and corner radius on the compressive behaviour of FRP–stirrup composite−confined concrete was analysed. An increase in the corner radius can cause the strain distribution of the FRP to be more uniform and strengthen the restraint effect. The larger the corner radius of the specimen, the better the improvement of mechanical properties. The strength of the circular section specimen was greatly improved. In addition, the test parameters also included the FRP layers, FRP types and stirrup spacing. With the same corner radius, increasing the number of FRP layers or densifying the stirrup spacing effectively improved the mechanical properties of the specimens. Finally, a database of FRP–stirrup composite−confined concrete column test results with different corner radii was established. The general calculation models were proposed, respectively, for the peak points, ultimate points and stress–strain models that are applicable to FRP−, stirrup− and FRP–stirrup−confined concrete columns with different cross−sectional shapes under axial compression.

2022 ◽  
Vol 12 (2) ◽  
pp. 836
Nilo Cesar Consoli ◽  
Jordanna Chamon Vogt ◽  
João Paulo Sousa Silva ◽  
Helder Mansur Chaves ◽  
Hugo Carlos Scheuermann Filho ◽  

Failures of tailings dams, primarily due to liquefaction, have occurred in Brazil in recent years. These events have prompted the Brazilian government to place restrictions on the construction of new dams, as iron ore tailings deposited behind upstream dams by spigotting have been shown to have low in situ densities and strengths and are prone to failure. This work proposes a new trend for tailings disposal: stacking compacted filtered ore tailings–Portland cement blends. As part of the proposal, it analyses the behaviour of compacted iron ore tailings–Portland cement blends, considering the use of small amounts of Portland cement under distinct compaction degrees. With the intention of evaluating the stress–strain–strength–durability behaviour of the blends, the following tests were carried out: unconfined compression tests; pulse velocity tests; wetting–drying tests; and standard drained triaxial compression tests with internal measurement of strains. This is the first study performed to determine the strength and initial shear stiffness evolution of iron ore tailings–Portland cement blends during their curing time, as well friction angle and cohesion intercept. This manuscript postulates an analysis of original experimental results centred on the porosity/cement index (η/Civ). This index can help select the cement quantity and density for important design parameters of compacted iron ore tailings–cement blends required in geotechnical engineering projects such as the proposed compacted filtered iron ore tailings–cement blends stacking.

2022 ◽  
Vol 12 (1) ◽  
Estefano Muñoz-Moya ◽  
Claudio M. García-Herrera ◽  
Nelson A. Lagos ◽  
Aldo F. Abarca-Ortega ◽  
Antonio G. Checa ◽  

AbstractMollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., $$pCO_2$$ p C O 2 -induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material’s stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 595
Petr Kawulok ◽  
Petr Opěla ◽  
Ivo Schindler ◽  
Rostislav Kawulok ◽  
Stanislav Rusz ◽  

The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 58
Yujie Feng ◽  
Haijian Su ◽  
Yinjiang Nie ◽  
Honghui Zhao

Marble is a common rock used in many buildings for structural or ornamental purposes and is widely distributed in underground engineering projects. The rocks are exposed to high temperatures when a tunnel fire occurs, and they will be rapidly cooled during the rescue process, which has a great impact on the rock performance and the underground engineering stability. Therefore, the role of cyclic thermal shocks on the physical and mechanical properties of marble specimens was systematically investigated. Different cyclic thermal shock treatments (T = 25, 200, 400, 600, 800 °C; N = 1, 3, 5, 7, 9) were applied to marble specimens and the changes in mass, volume, density and P-wave velocity were recorded in turn. Then, the thermal conductivity, optical microscopy and uniaxial compression tests were carried out. The results showed that both the cyclic thermal shock numbers (N) and the temperature level (T) weaken the rock properties. When the temperature of a thermal shock exceeds 600 °C, the mass loss coefficient and porosity of the marble will increase significantly. The most noticeable change in P-wave velocity occurs between 200 and 400 °C, with a 52.98% attenuation. After three thermal shocks, the cyclic thermal shock numbers have little influence on the uniaxial compressive strength and Young’s modulus of marble specimens. Shear failure is the principal failure mode in marble specimens that have experienced severe thermal damage (high N or T). The optical microscopic pictures are beneficial for illustrating the thermal cracking mechanism of marble specimens after cyclic thermal shocks.

2022 ◽  
Vol 8 ◽  
Yue Liu ◽  
Jia-Zhan Xie ◽  
Jing-Liang Yan

Fiber-reinforced polymer (FRP) has been widely used in civil engineering due to its light weight, high strength, convenient construction, and strong corrosion resistance. One of the important applications of FRP composites is the concrete-filled FRP tube (CFFT), which can greatly improve the compressive strength and ductility of concrete as well as facilitate construction. In this article, the compressive performances of a normal concrete-filled FRP tube (N-CFFT) column with 5-hour curing time and an ultra-early strength concrete-filled FRP tube (UES–CFFT) column with zero curing time were studied by considering the characteristics of rapid early strength improvement of ultra-early strength concrete and the confinement effect of the FRP tube. Monotonic axial compression tests were carried out on 3 empty FRP tubes (FTs) without an internal filler and 6 CFFT (3 N-CFFTs and 3 UES-CFFTs) specimens. All specimens were cylinders of 200 mm in diameter and 600 mm in height, confined by glass fiber–reinforced polymer (GFRP). Test results indicated that the compressive bearing capacity of the specimens increased significantly by adopting the ultra-early strength concrete as the core concrete of the CFFT, although the curing time was zero. It was also shown that the compressive behavior of the UES–CFFT specimens with zero curing time increased significantly than that of the N-CFFT specimens with 5-hour curing time because the former was able to achieve rapid strength enhancement in a very short time than the latter. The ultimate compressive strength of UES–CFFT specimens with zero curing time reached 78.3 MPa, which was 66.2 and 97.2% higher than that of N-CFFT with 5-hour curing time and FT specimens, respectively. In addition, a simple confinement model to predict the strength of UES–CFFT with zero curing time in ultimate condition was introduced. Compared with the existing models, the proposed model could predict the ultimate strength of UES–CFFT specimens with zero curing time with better accuracy.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 143
Zhangxing Liu ◽  
Rongfeng Zhou ◽  
Wentao Xiong ◽  
Zilong He ◽  
Tao Liu ◽  

Copper–tin alloys are widely used in the machining and molding of sleeves, bearings, bearing housings, gears, etc. They are a material used in heavy-duty, high-speed and high-temperature situations and subject to strong friction conditions due to their high strength, high modulus of elasticity, low coefficient of friction and good wear and corrosion resistance. Although copper–tin alloys are excellent materials, a higher performance of mechanical parts is required under extreme operating conditions. Plastic deformation is an effective way to improve the overall performance of a workpiece. In this study, medium-temperature compression tests were performed on a semi-solid CuSn10P1 alloy using a Gleeble 1500D testing machine at different temperatures (350−440 °C) and strain rates (0.1−10 s−1) to obtain its medium-temperature deformation characteristics. The experimental results show that the filamentary deformation marks appearing during the deformation are not single twins or slip lines, but a mixture of dislocations, stacking faults and twins. Within the experimental parameters, the filamentary deformation marks increase with increasing strain and decrease with increasing temperature. Twinning subdivides the grains into lamellar sheets, and dislocation aggregates are found near the twinning boundaries. The results of this study are expected to make a theoretical contribution to the forming of copper–tin alloys in post-processing processes such as rolling and forging.

2022 ◽  
pp. 136943322110509
Liwen Zhang ◽  
Zhujian Xie ◽  
Jing Li ◽  
Junping Zhang ◽  
Qinglun Yu ◽  

A new type of pier anti-collision composite structure composed of honeycomb steel and polyurethane (PU) elastomer was proposed in this study. The impacts of the shape and filling materials of inner core cells on the failure mode, load–displacement cure, bearing capacity, structural stability, and energy absorption were studied by conducting uniaxial compression tests on device segments. Test results showed that the bearing capacity, structural stability, and energy absorption of honeycomb steel structure were significantly improved by PU elastomer filling. Besides, when compared with the square honeycomb structure and the regular hexagon honeycomb structure, the maximum values of average load, total energy absorption (TEA), and specific energy absorption (SEA), which were 69.6 kN, 1986.1 J, and 1300 J/kg, respectively, for the regular triangle honeycomb structure without PU filling, increased to 459.3%, 376.38%, and 212.5%, respectively, for the regular hexagonal core cell structure with PU filling, which was proved to be the most suitable core structure for pier anti-collision device.

Sign in / Sign up

Export Citation Format

Share Document