A simple numerical procedure for the elasto-plastic coupling finite strain analysis of circular tunnels in strain-softening rock masses

2021 ◽  
Vol 130 ◽  
pp. 103921
Author(s):  
Qiang Zhang ◽  
Wei He ◽  
Hai-Yang Zhang ◽  
Hong-Ying Wang ◽  
Bin-Song Jiang

Possible restrictions on isotropic constitutive laws for finitely deformed elastic solids are examined from the standpoint of Hill (1968). This introduced the notion of conjugate pairs of stress and strain measures, whereby families of contending inequalities can be generated. A typical member inequality stipulates that the scalar product of the rates of change of certain conjugate variables is positive in all circumstances. Interrelations between the various inequalities are explored, and some statical implications are established. The discussion depends on several ancillary theorems which are apparently new; these have, in addition, an intrinsic interest in the broad field of basic stress—strain analysis.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 209
Author(s):  
Gabriel D. Gwanmesia ◽  
Matthew L. Whitaker ◽  
Lidong Dai ◽  
Alwin James ◽  
Haiyan Chen ◽  
...  

We measured the elastic velocities of a synthetic polycrystalline β-Mg2SiO4 containing 0.73 wt.% H2O to 10 GPa and 600 K using ultrasonic interferometry combined with synchrotron X-radiation. Third-order Eulerian finite strain analysis of the high P and T data set yielded Kso = 161.5(2) GPa, Go = 101.6(1) GPa, and (∂Ks/∂P)T = 4.84(4), (∂G/∂P)T = 1.68(2) indistinguishable from Kso = 161.1(3) GPa, Go = 101.4(1) GPa, and (∂Ks/∂P)T = 4.93(4), (∂G/∂P)T = 1.73(2) from the linear fit. The hydration of the wadsleyite by 0.73 wt.% decreases Ks and G moduli by 5.3% and 8.6%, respectively, but no measurable effect was noted for (∂Ks/∂P)T and (∂G/∂P)T. The temperature derivatives of the Ks and G moduli from the finite strain analysis (∂KS/∂T)P = −0.013(2) GPaK−1, (∂G/∂T)P = −0.015(0.4) GPaK−1, and the linear fit (∂KS/∂T)P = −0.015(1) GPaK−1, (∂G/∂T)P = −0.016(1) GPaK−1 are in agreement, and both data sets indicating the |(∂G/∂T)P| to be greater than |(∂KS/∂T)P|. Calculations yield ∆Vp(α-β) = 9.88% and ∆VS(α-β) = 8.70% for the hydrous β-Mg2SiO4 and hydrous α-Mg2SiO4, implying 46–52% olivine volume content in the Earth’s mantle to satisfy the seismic velocity contrast ∆Vs = ∆VP = 4.6% at the 410 km depth.


Sign in / Sign up

Export Citation Format

Share Document