linear fit
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 59)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Thiago Costa Caetano ◽  
Mikael Frank Rezende Júnior ◽  
Agenor Pina da Silva ◽  
Camila Cardoso Moreira

Abstract There always have been some hurdles when it comes to the adequate use of didactical experimental activities in science education, such as the lack of proper training, insufficient time, and inadequate infrastructure. At this very moment, the pandemic has taught us that there may be also circumstances in which the traditional laboratory and the traditional activities are just not possible, thus online operable experiments might constitute a viable alternative for the practical lessons in higher education. In this paper, we discuss the development and the implementation of a remote-controlled didactical experiment on Standing Waves largely used in the physics basic program offered to the engineering courses. The development has combined applied knowledge from different areas, i.e. electric and electronics engineering, and computer science. In order to ascertain the experiment consistency, we have gathered data from the wave propagation speed and from the corresponding tension applied to the string and performed a χ-square linear fit in order to determine the correlation between the logarithm of both parameters. The experiment was successfully implemented and has been accessed by hundreds of different users from more than 30 different countries ever since. It has also been largely employed in practical activities at the university and has shown no significant signs of instability. It exhibited a total latency time inferior to 0.8 seconds on average and the results drawn from data it provides have shown to be accurate, within less than 0.8% of deviation with respect to the theoretical results.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 189
Author(s):  
Haowen Xu ◽  
Yutong Song ◽  
Panpan Zhu ◽  
Wanli Zhao ◽  
Tongyu Liu ◽  
...  

Alcohol detection plays a key role in food processing and monitoring. Therefore, we present a fast, high reproducibility and label-free characteristics alcohol photochemical sensor based on the surface plasmon resonance (SPR) effect. By growing ZnO nanoflowers on Au film, the SPR signal red-shifted in the visible region as the alcohol concentration increased. More interestingly, the sensitivity improved to 127 nm/%, which is attributed to the ZnO nanoflowers/Au structure. The goodness of the linear fit was more than 0.99 at a range from 0 vol% to 95 vol% which ensures detection resolution. Finally, a practical application for distinguishing five kinds of alcoholic drinks has been demonstrated. The excellent sensing characteristics also indicate the potential of the device for applications in the direction of food processing and monitoring, and the simple structure fabrication and economic environmental protection make it more attractive.


2021 ◽  
Author(s):  
Dietrich Althausen ◽  
Clara Seidel ◽  
Ronny Engelmann ◽  
Hannes Griesche ◽  
Martin Radenz ◽  
...  

<p>Water vapor profiles with high vertical and temporal resolution were determined by use of the Raman lidar PollyXT within the MOSAiC campaign in the Arctic during the winter time 2019 – 2020. These measurements need a calibration. Usually, radiosonde data are utilized to calibrate the lidar data by the profile or the linear fit method, respectively. The radiosonde is drifting with the wind; thus, it is often measuring different atmospheric volumes compared to the lidar observations.</p> <p>The period 5-7 February 2020 is used to demonstrate the results. The correlation coefficient of the linear fit between the radiosonde and the lidar data varies with the different atmospheric conditions. The calibration results from the profile method coincide with those of the linear fit method, but the selection of the appropriate calibration setup is not straightforward. The varying correlation of the calibration results is attributed to the partly too low data-variability of the water vapor mixing ratio in the respective heights.  Moreover, the drift of the radiosondes with the wind and hence measurements of atmospheric volumes with lateral distances will have decreased the correlation between the lidar and the radiosonde measurements.</p> <p>During MOSAiC a microwave radiometer was collocated close to the lidar. This system was measuring the same atmospheric vertical column. Its product, the integrated water vapor, might be useful for the calibration of the lidar.</p> <p>Hence, the contribution will analyze the error of the lidar retrieved water vapor mixing ratio that includes the calibration with the radiosonde data and the microwave radiometer product.</p> <p> </p>


2021 ◽  
Vol 2 (2) ◽  
pp. 64
Author(s):  
Rohit Uppal

 Refractive index (RI) was characterized from the angle formed at the axis and slope of the linear fit of the measured perimeter of the loop of a waveguide vs. computed perimeter of the loop of the waveguide by using time-of-flight (TOF) sensor. The RI of uncladded commercially available waveguide was found to be 1.247 and 1.319 at 940 nm using ToF sensor and ellipsometer, respectively. The novel, simple and cost-effective technique may hold potential to initiate new avenues of research.


2021 ◽  
Vol 923 (2) ◽  
pp. 152
Author(s):  
Yoo Jung Kim ◽  
Myung Gyoon Lee

Abstract Surface brightness fluctuation (SBF) magnitudes are a powerful standard candle to measure distances to semiresolved galaxies in the local universe, a majority of which are dwarf galaxies that often have bluer colors than bright early-type galaxies. We present an empirical i-band SBF calibration in a blue regime, 0.2 ≲ (g − i)0 ≲ 0.8 in the Hyper Suprime-Cam (HSC) magnitude system. We measure SBF magnitudes for 12 nearby dwarf galaxies of various morphological types with archival HSC imaging data, and use their tip of the red giant branch distances to derive fluctuation–color relations. In order to subtract contributions of fluctuations due to young stellar populations, we use five different g-band magnitude masking thresholds, M g,thres = −3.5, −4.0, −4.5, −5.0, and −5.5 mag. We find that the rms scatter of the linear fit to the relation is the smallest (rms = 0.16 mag) in the case of M g,thres = −4.0 mag, M ¯ i = (−2.65 ± 0.13) + (1.28 ± 0.24) × (g − i)0. This scatter is much smaller than those in the previous studies (rms = 0.26 mag), and is closer to the value for bright red galaxies (rms = 0.12 mag). This calibration is consistent with predictions from metal-poor simple stellar population models.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Luis Martí-Bonmatí ◽  
Alejandro Rodríguez-Ortega ◽  
Amadeo Ten-Esteve ◽  
Ángel Alberich-Bayarri ◽  
Bernardo Celda ◽  
...  

Abstract Background Indirect 1H-magnetic resonance (MR) imaging of 17O-labelled water allows imaging in vivo dynamic changes in water compartmentalisation. Our aim was to describe the feasibility of indirect 1H-MR methods to evaluate the effect of H217O on the MR relaxation rates by using conventional a 3-T equipment and voxel-wise relaxation rates. Methods MR images were used to calculate the R1, R2, and R2* relaxation rates in phantoms (19 vials with different H217O concentrations, ranging from 0.039 to 5.5%). Afterwards, an experimental animal pilot study (8 rats) was designed to evaluate the in vivo relative R2 brain dynamic changes related to the intravenous administration of 17O-labelled water in rats. Results There were no significant changes on the R1 and R2* values from phantoms. The R2 obtained with the turbo spin-echo T2-weighted sequence with 20-ms echo time interval had the higher statistical difference (0.67 s−1, interquartile range 0.34, p < 0.001) and Spearman correlation (rho 0.79). The R2 increase was adjusted to a linear fit between 0.25 and 5.5%, represented with equation R2 = 0.405 concentration + 0.3215. The highest significant differences were obtained for the higher concentrations (3.1–5.5%). The rat brain MR experiment showed a mean 10% change in the R2 value after the H217O injection with progressive normalisation. Conclusions Indirect 1H-MR imaging method is able to measure H217O concentration by using R2 values and conventional 3-T MR equipment. Normalised R2 relative dynamic changes after the intravenous injection of a H217O saline solution provide a unique opportunity to map water pathophysiology in vivo, opening the analysis of aquaporins status and modifications by disease at clinically available 3-T proton MR scanners.


Author(s):  
Leah D. Grant ◽  
Susan C. van den Heever ◽  
Ziad S. Haddad ◽  
Jennie Bukowski ◽  
Peter J. Marinescu ◽  
...  

Abstract Vertical velocities and microphysical processes within deep convection are intricately linked, having wide-ranging impacts on water and mass vertical transport, severe weather, extreme precipitation, and the global circulation. The goal of this research is to investigate the functional form of the relationship between vertical velocity, w, and microphysical processes that convert water vapor into condensed water, M, in deep convection. We examine an ensemble of high-resolution simulations spanning a range of tropical and midlatitude environments, a variety of convective organizational modes, and different model platforms and microphysics schemes. The results demonstrate that the relationship between w and M is robustly linear, with the slope of the linear fit being primarily a function of temperature and secondarily a function of supersaturation. The R2 of the linear fit is generally above 0.6 except near the freezing and homogeneous freezing levels. The linear fit is examined both as a function of local in-cloud temperature and environmental temperature. The results for in-cloud temperature are more consistent across the simulation suite, although environmental temperatures are more useful when considering potential observational applications. The linear relationship between w and M is substituted into the condensate tendency equation and rearranged to form a diagnostic equation for w. The performance of the diagnostic equation is tested in several simulations, and it is found to diagnose the storm-scale updraft speeds to within 1 m s−1 throughout the upper half of the clouds. Potential applications of the linear relationship between w and M and the diagnostic w equation are discussed.


2021 ◽  
Vol 34 (21) ◽  
pp. 8669-8682 ◽  
Author(s):  
Raphaël Rousseau-Rizzi ◽  
Kerry Emanuel

AbstractPotential intensity (PI) has been shown to have a linear sensitivity to sea surface temperature (SST) of about 8 m s−1 K−1, which is close to the sensitivity of PI in simulations subject to a weak temperature gradient (WTG) approximation. This suggests that most of the PI variance is associated with local rather than global SST variations. We verify that PI perturbations are approximately linear in SST, with slopes of 1.8 ± 0.2 m s−1 K−1 in radiative–convective equilibrium (RCE) and 9.1 ± 0.9 m s−1 K−1 in WTG. To do so, we simulate the sensitivity of both RCE and WTG states in a single-column model (SCM) perturbed by changing in turn CO2 concentration, aerosol concentrations, prescribed SST, and surface winds speeds. While PI is much more sensitive to SST in WTG than in RCE simulations, the SST itself is much less sensitive to radiative forcing in WTG than in RCE because of the absence of strong atmospheric response. Using these results, we develop a linear model, based on SST and midlevel saturation MSE perturbations, to partition SST and PI perturbations between local components occurring under a WTG constraint and global components that are representative of an RCE state. This model explains up to 95% of the variability of PI in reanalysis. The SCM-derived linear model coefficients are statistically indistinguishable from coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE in most ocean basins. Our model shows that North Atlantic PI variations are explained almost entirely by local forcings in recent decades.


2021 ◽  
Vol 15 (9) ◽  
pp. 4527-4537
Author(s):  
Marek Muchow ◽  
Amelie U. Schmitt ◽  
Lars Kaleschke

Abstract. Using Copernicus Sentinel-2 images we derive a statistical lead-width distribution for the Weddell Sea. While previous work focused on the Arctic, this is the first lead-width distribution for Antarctic sea ice. Previous studies suggest that the lead-width distribution follows a power law with a positive exponent; however their results for the power-law exponents are not all in agreement with each other. To detect leads we create a sea-ice surface-type classification based on 20 carefully selected cloud-free Sentinel-2 Level-1C products, which have a resolution of 10 m. The observed time period is from November 2016 until February 2018, covering only the months from November to April. We apply two different fitting methods to the measured lead widths. The first fitting method is a linear fit, while the second method is based on a maximum likelihood approach. Here, we use both methods for the same lead-width data set to observe differences in the calculated power-law exponent. To further investigate influences on the power-law exponent, we define two different thresholds: one for open-water-covered leads and one for open-water-covered and nilas-covered leads. The influence of the lead threshold on the exponent is larger for the linear fit than for the method based on the maximum likelihood approach. We show that the exponent of the lead-width distribution ranges between 1.110 and 1.413 depending on the applied fitting method and lead threshold. This exponent for the Weddell Sea sea ice is smaller than the previously observed exponents for the Arctic sea ice.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
J. A. López-Bueno ◽  
J. Díaz ◽  
F. Follos ◽  
J. M. Vellón ◽  
M. A. Navas ◽  
...  

Abstract Background An area of current study concerns analysis of the possible adaptation of the population to heat, based on the temporal evolution of the minimum mortality temperature (MMT). It is important to know how is the evolution of the threshold temperatures (Tthreshold) due to these temperatures provide the basis for the activation of public health prevention plans against high temperatures. The objective of this study was to analyze the temporal evolution of threshold temperatures (Tthreshold) produced in different Spanish regions during the 1983–2018 period and to compare this evolution with the evolution of MMT. The dependent variable used was the raw rate of daily mortality due to natural causes ICD X: (A00-R99) for the considered period. The independent variable was maximum daily temperature (Tmax) during the summer months registered in the reference observatory of each region. Threshold values were determined using dispersion diagrams (annual) of the prewhitened series of mortality temperatures and Tmax. Later, linear fit models were carried out between the different values of Tthreshold throughout the study period, which permitted detecting the annual rate of change in Tthreshold. Results The results obtained show that, on average, Tthreshold has increased at a rate of 0.57 ºC/decade in Spain, while Tmax temperatures in the summer have increased at a rate of 0.41 ºC/decade, suggesting adaptation to heat. This rate of evolution presents important geographic heterogeneity. Also, the rate of evolution of Tthreshold was similar to what was detected for MMT. Conclusions The temporal evolution of the series of both temperature measures can be used as indicators of population adaptation to heat. The temporal evolution of Tthreshold has important geographic variation, probably related to sociodemographic and economic factors, that should be studied at the local level.


Sign in / Sign up

Export Citation Format

Share Document