Numerical solutions for tunnels excavated in strain-softening rock masses considering a combined support system

2021 ◽  
Vol 92 ◽  
pp. 905-930
Author(s):  
Fei Song ◽  
Alfonso Rodriguez-Dono
2017 ◽  
Vol 23 (6) ◽  
pp. 773-786 ◽  
Author(s):  
Ali GHORBANI ◽  
Hadi HASANZADEHSHOOIILI

Ground Reaction Curve (GRC) is one of the most important elements of convergence-confinement method generally used to design tunnels. Realistic presentation of GRC is usually assessed based on the advanced rock strength criteria, also, rock mass behavior (including plasticity and softening treatments). Since taking these parameters into ac­count is not simply possible for practitioners and needs complicated coupled theoretical-numerical solutions, this paper presents a simple novel approach based on Evolutionary Polynomial Regression to determine GRC of rock masses obeying both Mohr-Coulomb and Hoek-Brown criteria and strain softening behaviors. The proposed models accurately present support pressures based on radial displacement, rock mass strength and softening parameter (determination coefficient of 97.98% and 94.2% respectively for Mohr-Coulomb and Hoek-Brown strain softening materials). The ac­curacy of the proposed equations are approved through comparing the EPR developed GRCs with the ground reaction curves available in the literature. Besides, the sensitivity analysis is carried out and in-situ stress, residual Hoek-Brown’s m constant and residual dilation angle are introduced as parameters with the most influence on the support pressure in Hoek-Brown and peak and residual geological strength index are the most affective parameters on the support pressure of tunnels in the strain softening Mohr-Coulomb rock mass.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


2003 ◽  
Vol 27 (13) ◽  
pp. 1153-1185 ◽  
Author(s):  
E. Alonso ◽  
L. R. Alejano ◽  
F. Varas ◽  
G. Fdez-Manin ◽  
C. Carranza-Torres

Sign in / Sign up

Export Citation Format

Share Document