Elastic properties of three-phase composites: analytical model based on the modified shear-lag model and the method of cells

2005 ◽  
Vol 65 (7-8) ◽  
pp. 1264-1275 ◽  
Author(s):  
Juan Carlos Afonso ◽  
Giorgio Ranalli
2017 ◽  
Vol 26 (3-4) ◽  
pp. 95-103 ◽  
Author(s):  
Vijay Choyal ◽  
Shailesh I. Kundalwal

AbstractIn this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.


1994 ◽  
Vol 365 ◽  
Author(s):  
Chun-Hway Hsueh

ABSTRACTThe shear lag model has been used extensively to analyze the stress transfer in a singe fiberreinforced composite (i.e., a microcomposite). To achieve analytical solutions, various simplifications have been adopted in the stress analysis. Questions regarding the adequacy of those simplifications are discussed in the present study for the following two cases: bonded interfaces and frictional interfaces. Specifically, simplifications regarding (1) Poisson's effect, and (2) the radial dependences of axial stresses in the fiber and the matrix are addressed. For bonded interfaces, the former can be ignored, and the latter can generally be ignored. However, when the volume fraction of the fiber is high, the radial dependence of the axial stress in the fiber should be considered. For frictional interfaces, the latter can be ignored, but the former should be considered; however, it can be considered in an average sense to simplify the analysis. Comparisons among results obtained from analyses with various simplifications are made.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Quan Yuan ◽  
Mengjun Wu

An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.


2001 ◽  
Author(s):  
B. Yang ◽  
S. Mall

Abstract The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.


Sign in / Sign up

Export Citation Format

Share Document