scholarly journals Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements

2008 ◽  
Vol 68 (2) ◽  
pp. 506-515 ◽  
Author(s):  
Jean Launay ◽  
Gilles Hivet ◽  
Ahn V. Duong ◽  
Philippe Boisse
2018 ◽  
Author(s):  
Shenglei Xiao ◽  
Peng Wang ◽  
Damien Soulat ◽  
Xavier Legrand ◽  
Hang Gao

2014 ◽  
Vol 611-612 ◽  
pp. 292-299 ◽  
Author(s):  
Sylvain Mathieu ◽  
Philippe Boisse ◽  
Nahiene Hamila ◽  
Florent Bouillon

3D woven composite reinforcements preforming simulations are an unavoidable step of composite part processing. The present paper deals with thick composite fabric behavior modelling and issues arising during the numerical simulation of preforming. After the description of the independent deformation modes of initially orthotropic reinforcements, a physically motivated and invariant based hyperelastic strain energy density is introduced. This constitutive law is used to show the limitations of a classical finite element formulation in 3D fabric simulations. Tension locking is highlighted in bias extension tests and a reduced integration hexahedral finite element with specific physical hourglass stabilization is proposed. Instabilities due to the highly anisotropic behavior law, witnessed in bending dominated situations, are exposed and a stabilization procedure is initiated.


2018 ◽  
Vol 153 ◽  
pp. 159-166 ◽  
Author(s):  
Shenglei Xiao ◽  
Peng Wang ◽  
Damien Soulat ◽  
Juliette Minet ◽  
Lilia Zemni ◽  
...  
Keyword(s):  

2007 ◽  
Vol 16 (4) ◽  
pp. 096369350701600 ◽  
Author(s):  
P. Boisse ◽  
N. Hamila ◽  
F. Helenon ◽  
Y. Aimene ◽  
T. Mabrouki

The textile reinforcements used for composites are multiscale materials. A fabric is made of woven yarns themselves composed of thousand of juxtaposed fibres. For the simulation of the draping of these textile reinforcements several families of approaches can be distinguished in function of the level of the modelling. The continuous approaches consider the fabric as a continuum with a specific behaviour. The discrete approaches use models of some components such as the yarns and sometimes the fibres. Different approaches used for the simulation of woven reinforcement forming are investigated in the present paper. Among them, an approach based on semi discrete finite elements made of woven unit cells under biaxial tension and in-plane shear is detailed. The advantage and inconvenient of the different approaches are compared.


2002 ◽  
Vol 10 (7) ◽  
pp. 511-520
Author(s):  
G. Weissenbach ◽  
D. Brown ◽  
L. Limmer

The application of the plate twist test method to 3D-woven textile composites was investigated using both numerical analyses of the test set-up as well as experimental results. Comparisons with the widely used V-notched beam shear and 10°-off-axis tension tests are introduced in an attempt to identify the true in-plane shear response. The results of this study demonstrate that with careful specimen preparation and an adequate test fixture precise in-plane shear modulus data can be obtained. Moreover, for 3D-woven textile composites with their large unit cells the plate twist test appears to be superior in revealing the “true” in-plane shear behaviour.


Sign in / Sign up

Export Citation Format

Share Document