specimen preparation
Recently Published Documents


TOTAL DOCUMENTS

1591
(FIVE YEARS 205)

H-INDEX

48
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 451
Author(s):  
Muhammed H. Arikan ◽  
Fatih Eroglu ◽  
Volkan Eskizeybek ◽  
Emine Feyza Sukur ◽  
Mehmet Yildiz ◽  
...  

Aerospace-grade composite parts can be manufactured using Vacuum Bag Only prepregs through an accurate process design. Quality in the desired part can be realized by following process modeling, process optimization, and validation, which strongly depend on a primary and systematic material characterization methodology of the prepreg system and material constitutive behavior. The present study introduces a systematic characterization approach of a Vacuum Bag Only prepreg by covering the relevant material properties in an integrated manner with the process mechanisms of fluid flow, consolidation, and heat transfer. The characterization recipe is practiced under the categories of (i) resin system, (ii) fiber architecture, and (iii) thermal behavior. First, empirical models are successively developed for the cure-kinetics, glass transition temperature, and viscosity for the resin system. Then, the fiber architecture of the uncured prepreg system is identified with X-ray tomography to obtain the air permeability. Finally, the thermal characteristics of the prepreg and its constituents are experimentally characterized by adopting a novel specimen preparation technique for the specific heat capacity and thermal conductivity. Thus, this systematic approach is designed to provide the material data to process modeling with the motivation of a robust and integrated Vacuum Bag Only process design.


2022 ◽  
Author(s):  
Hyun-Seok Yun ◽  
Seong-Woo Moon ◽  
Yong-Seok Seo

Abstract Determining the mechanical properties of fault-core-zone materials is challenging because of the low strength of such materials, which affects field sampling, specimen preparation, and laboratory testing. We overcame this problem by preparing and testing mechanical properties of 132 artificial fault-core-zone specimens consisting of mixtures of breccia, sand, clay, and water. The unconfined compressive strength (UCS), elastic modulus (E), and penetration resistance value (PRV) of these fault-core-zone materials were measured, and the effects of breccia content and water content on mechanical properties were assessed. Results show that UCS is inversely proportional to breccia content and water content, and that E is inversely proportional to water content. Furthermore, the inverse relationship of UCS with water content varies with breccia content. UCS is proportional to both PRV and E, and the relationship for each varies with breccia content. High coefficients of determination (R2 = 0.62–0.88) between the parameters suggest that breccia content, water content, and PRV are potentially useful parameters for estimating the mechanical properties of fault core zones.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 169
Author(s):  
Tommaso Tocci ◽  
Lorenzo Capponi ◽  
Roberto Marsili ◽  
Gianluca Rossi

<p>Thermoelastic stress analysis (TSA) is a non-contact measurement technique for stress distribution evaluation. A common issue related to this technique is the rigid-displacement of the specimen during the test phase, that can compromise the reliability of the measurement. For this purpose, several motion compensation techniques have been implemented over the years, but none of them is provided through a single measurement and a single sample surface conditioning. Due to this, a motion compensation technique based on Optical-Flow has been implemented, which greatly increases the strength and the effectiveness of the methodology through a single measurement and single specimen preparation. The proposed approach is based on measuring the displacement field of the specimen directly from the thermal video, through optical flow. This displacement field is then used to compensate for the specimen’s displacement on the infrared video, which will then be used for thermoelastic stress analysis. Firstly, the algorithm was validated by a comparison with synthetic videos, created ad hoc, and the quality of the motion compensation approach was evaluated on video acquired in the visible range. The research moved into infrared acquisitions, where the application of TSA gave reliable and accurate results. Finally, the quality of the stress map obtained was verified by comparison with a numerical model.</p>


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Yi Qiao ◽  
Yalong Zhao ◽  
Zheng Zhang ◽  
Binbin Liu ◽  
Fusheng Li ◽  
...  

Atomic probe tomography (APT) samples with Al/Ni multilayer structure were successfully prepared by using a focused ion beam (FIB), combining with a field emission scanning electron microscope, with a new single-wedge lift-out method and a reduced amorphous damage layer of Ga ions implantation. The optimum vertex angle and preparation parameters of APT sample were discussed. The double interdiffusion relationship of the multilayer films was successfully observed by the local electrode APT, which laid a foundation for further study of the interface composition and crystal structure of the two-phase composites.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 364
Author(s):  
Ivan Grgić ◽  
Mirko Karakašić ◽  
Željko Ivandić ◽  
Tanja Jurčević Jurčević Lulić

To determine the biomechanical properties of the distal tendon of the gracilis muscle and the upper third of the quadriceps femoris muscle used for reconstruction of the medial patellofemoral ligament (MPFL), it is necessary to develop a calibration device for specimen preparation for uniaxial tensile tests. The need to develop this device also stems from the fact that there is currently no suitable regulatory or accurate protocol by which soft tissues such as tendons should be tested. In recent studies, various methods have been used to prepare test specimens, such as the use of different ratios of gauge lengths, different gripping techniques, etc., with the aim of obtaining measurable and comparable biomechanical tissue properties. Since tendons, as anisotropic materials, have viscoelastic properties, the guideline for manufacturing calibrator devices was the ISO 527-1:1993 standard, used for testing polymers, since they also have viscoelastic behaviour. The functionality of a calibrator device was investigated by preparing gracilis and quadriceps tendon samples. Fused deposition modeling (FDM) technology was used for the manufacturing of parts with complex geometry. The proposed calibrator could operate in two positions, horizontal and vertical. The maximum gauge length to be achieved was 60 mm, with the maximum tendon length of 120 mm. The average preparation time was 3 min per tendon. It was experimentally proven that it is possible to use a calibrator to prepare tendons for tensile tests. This research can help in the further development of soft tissue testing devices and also in the establishment of standards and exact protocols for their testing.


2021 ◽  
Author(s):  
Roman Koning ◽  
Hildo Vader ◽  
Martijn van Nugteren ◽  
Peter Grocutt ◽  
Wen Yang ◽  
...  

Abstract Speed and efficiency of data collection and image processing in cryo electron microscopy have increased over the last decade. However, cryo specimen preparation techniques have lagged behind and faster, more reproducible specimen preparation devices are needed. Here we present a new vitrification device with highly automated sample handling, requiring only limited user interaction. Moreover, the device allows inspection of thin films using light microscopy, since excess liquid is removed through suction by tubes, not blotting paper. In combination with dew-point control, this enables thin film preparation in a controlled and reproducible manner. The advantage is that quality of the prepared cryo specimen is characterized prior to electron microscopy data acquisition. Practicality and performance of the device are illustrated by experimental results obtained by vitrification of protein suspensions, lipid vesicles, bacterial and human cells, followed by imaged using single particle analysis, cryo electron tomography and cryo correlated light and electron microscopy.


Author(s):  
Igor Oliveiros Cardoso ◽  
Alexandre Coelho Machado ◽  
Luísa de Oliveira Fernandes ◽  
Paulo Vinícius Soares ◽  
Luís Henrique Araújo Raposo

Abstract Objective The aim of this study was to evaluate the influence of different light-curing units (LCUs) with distinct tip diameters and light spectra for activating bulk-fill resins. Materials and Methods The specimens (n = 10) were made from a conventional composite (Amaris, VOCO) and bulk-fill resins (Aura Bulk Fill, SDI; Filtek One, 3M ESPE; Tetric Bulk Fill, Ivoclar Vivadent) with two diameters, 7 or 10 mm, × 2 mm thickness. Following 24 hours of specimen preparation, the degree of conversion (DC) was evaluated using the Fourier-transform infrared unit. Knoop hardness (KHN) readings were performed on the center and periphery of the specimens. Data were assessed for homoscedasticity and submitted to one-way and three-way analysis of variance followed by the Tukey's and Dunnett's tests, depending on the analysis performed (α = 0.05). Results LCUs and specimen diameter significantly affected the DC. The Tetric Bulk Fill provided increased DC results when light-cured with Valo (54.8 and 53.5%, for 7 and 10 mm, respectively) compared with Radii Xpert (52.1 and 52.9%, for 7 and 10 mm, respectively). No significant differences in KHN results were noted for the conventional resin composite (Amaris) compared with LCUs (p = 0.213) or disc diameters (p = 0.587), but the center of the specimen exhibited superior KHN (p ≤ 0.001) than the periphery. Conclusion The light spectrum of the multipeak LCU (Valo) significantly increased the DC and KHN of the bulk-fill resin composite with additional initiator to camphorquinone (Tetric Bulk Fill) compared with the monowave LCU (Radii Xpert). The tip size of the LCUs influenced the performance of some of the resin composites tested.


Sign in / Sign up

Export Citation Format

Share Document