Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method

2014 ◽  
Vol 113 ◽  
pp. 328-338 ◽  
Author(s):  
Z.X. Lei ◽  
L.W. Zhang ◽  
K.M. Liew ◽  
J.L. Yu
2018 ◽  
Vol 5 (1) ◽  
pp. 95-115
Author(s):  
Fei Xie ◽  
Jinyuan Tang ◽  
Ailun Wang ◽  
Cijun Shuai ◽  
Qingshan Wang

Abstract In this paper, a unified solution for vibration analysis of the functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panels with general elastic supports is carried out via using the Ritz method. The excellent accuracy and reliability of the present method are compared with the results of the classical boundary cases found in the literature. New results are given for vibration characteristics of FG-CNTRC cylindrical panels with various boundary conditions. The effects of the elastic restraint parameters, thickness, subtended angle and volume fraction of carbon nanotubes on the free vibration characteristic of the cylindrical panels are also reported.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987292 ◽  
Author(s):  
Yan Guo ◽  
Yanan Jiang ◽  
Bin Huang

In this article, the free vibration of a functionally graded carbon nanotube–reinforced plate with central hole is investigated by means of the independent coordinates-based Rayleigh–Ritz method. For the proposed method, the kinematic and potential energies are substituted into Lagrange’s equation in order to obtain the equation of motion. However, the total energies are computed by the difference of energies between the hole domain and the plate domain. By applying the displacement matching condition at the hole domain, two coordinate systems are coupled. For the Rayleigh–Ritz method, the mode shape functions of uniform beams are assumed as admissible functions. By this method, convergent results can be obtained with certain number of terms of admissible functions. The present results clearly reflect the effects of the carbon nanotube distribution type, carbon nanotube volume fraction, hole size, and boundary condition on the nondimensional natural frequencies. The provided results show that the present method is efficient in studying the vibration problems of functionally graded carbon nanotube–reinforced plate with central hole.


Sign in / Sign up

Export Citation Format

Share Document