New axial Stress-Strain model of square concrete columns confined with lateral steel and FRP

2018 ◽  
Vol 202 ◽  
pp. 731-751 ◽  
Author(s):  
Ahmed Abd El Fattah
2018 ◽  
Vol 70 (20) ◽  
pp. 1064-1079 ◽  
Author(s):  
Haytham F. Isleem ◽  
Daiyu Wang ◽  
Zhenyu Wang

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 355
Author(s):  
Qudeer Hussain ◽  
Anat Ruangrassamee ◽  
Somnuk Tangtermsirikul ◽  
Panuwat Joyklad ◽  
Anil C. Wijeyewickrema

This research investigates the behavior of square concrete columns externally wrapped by low-cost and easily available fiber rope reinforced polymer (FRRP) composites. This study mainly aims to explore the axial stress-strain relationships of FRRP-confined square columns. Another objective is to assess suitable predictive models for the ultimate strength and strain of FRRP-confined square columns. A total of 60 square concrete columns were cast, strengthened, and tested under compression. The parameters were the corner radii of square columns (0, 13, and 26 mm) and different materials of FRRP composites (polyester, hemp, and cotton FRRP composites). The strength and deformability of FRRP-confined specimens were observed to be higher than the unconfined specimens. It was observed that strength gains of FRRP-confined concrete columns and corner radii were directly proportional. The accuracy of ultimate strength and strain models developed for synthetic FRRP-confined square columns was assessed using the test results of this study, showing the need for the development of improved predictive models for FRRP-confined square columns. Newly developed unified models were found to be accurate in predicting the ultimate strength and strain of FRRP-confined columns.


2021 ◽  
Vol 118 (3) ◽  
Author(s):  
Sary A. Malak ◽  
Neven Krstulovic-Opara ◽  
Rawan Sarieldine

Author(s):  
Tadao NAKAGOMI ◽  
Tomohisa YAMADA ◽  
Yuichi ICHIKAWA ◽  
Atsushi SUGIE

2020 ◽  
Vol 23 (16) ◽  
pp. 3481-3495
Author(s):  
Junlong Yang ◽  
Jizhong Wang ◽  
Ziru Wang

Due to the influence of “arching action” in fiber-reinforced polymer (FRP) partially confined concrete columns as a result of the unconfined regions, the confinement of the concrete columns wrapped with discrete FRP strips is less efficient when compared with full wrapping schemes. This study comprehensively investigates the difference of the the confinement mechanism between fully and partially FRP confined circular normal-strength concrete and thus presents a new design-oriented model to predict the stress–strain relationships of partially FRP confined normal-strength concrete. The formulas used to determine the strength and corresponding strain of several key points on the stress–strain curves are also proposed by the regression analysis according to a reliable test database from the relevant literature. Besides, another selected database including 100 FRP partially wrapped circular concrete columns is also collected for model verification. The results show that better performance can be achieved by the new model compared with the selected models in predicting the ultimate conditions of partially FRP confined concrete. Finally, some specimens are chosen to assess the performance of the new model in predicting the complete axial stress–strain curves. The comparisons reveal that satisfactory accuracy and good agreement can be achieved between the theoretical predictions and experimental observations.


Sign in / Sign up

Export Citation Format

Share Document