Journal of Asian Concrete Federation
Latest Publications


TOTAL DOCUMENTS

72
(FIVE YEARS 32)

H-INDEX

3
(FIVE YEARS 1)

Published By Asian Concrete Federation

2465-7972, 2465-7964

2021 ◽  
Vol 7 (2) ◽  
pp. 56-62
Author(s):  
P N Ojha ◽  
◽  
Puneet Kaura ◽  
Brijesh Singh ◽  
Y N Daniel ◽  
...  

Polymer modified mortar is found to be suitable for structural repair and strengthening of damage structural elements. Conventional mortar is not preferred in repair of concrete since it has inferior mechanical property and durability performance. Polymer based mortar is an alternative to conventional mortar with enhanced mechanical properties. However, there are limited specifications and guidelines available for specifying PMM mixes for structural repair work. The research work aims to evaluate the mechanical performance of polymer based mortar with varying concentration of styrene butadiene rubber latex at laboratory scale. Another aspect in repair of corrosion damage structures is the bond between the substrate concrete and repair mortar. In order to study the effectiveness of bonding agents, the performance evaluation of bonding agents has been evaluated using slant shear test and pull-off test as per ASTM C 882 and EN 1542 respectively. Findings of study indicates that at 8-10 percent concentration of dry polymer solid by cement mass in polymer based mortar is the optimum dosage. Styrene-butadiene rubber based polymer mortar showed improvement in flow in comparison to normal mortar however, mixes with crushed sand shows decrease in flow which is due to presence of more fines. Slant shear and pull-off test method shows epoxy bonding agent give better bond strength as compared to SBR latex.


2021 ◽  
Vol 7 (2) ◽  
pp. 1-16
Author(s):  
Soubhagya Karmakar ◽  
Saha Dauji ◽  
Sandeep Shankar Kshirsagar ◽  
Satish Kumar Saini ◽  
Kapilesh Bhargava ◽  
...  

Assessment of the present health of existing concrete structures is necessary, particularly for enhancing the life of the infrastructure facilities reaching the end of their design life. The codes stipulate establishment of site-specific correlation expressions to estimate the compressive strength of concrete from indirect non-destructive tests (NDT) such as rebound hammer or ultrasonic pulse velocity tests. However, in certain circumstances, requisite number of partially destructive (core) tests required for establishing the site-specific equations might not be feasible. In such scenario, selection of a suitable correlation expression from literature has to be performed in a rational way, as discussed in this article with a case study of a 40-year-old concrete building. From the study, it has been ob-served that for the limited number of direct tests, the Indian code stipulation resulted in higher characteristic strength of concrete as compared to the parametric estimation, which can be attributed to the assumption of Normal distribution and code stipulated (conservative) standard deviation value. In case of the indirect estimation cases, the parametric characteristic strength was pretty close to the corresponding non-parametric values indicat-ing that the fitted distributions represented the strength values very well. Recommendations for the suitable cor-relation expression from literature applicable for estimation of equivalent strength from NDT for the structure, recommendation for characteristic compressive strength of concrete and the suggestions for accounting for the inaccuracies in estimated strength in subsequent structural re-analysis have been provided from the results of the study.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Brijesh Singh ◽  
P N Ojha ◽  
Vikas Patel ◽  
Amit Trivedi ◽  
Abhishek Singh

With many benefits of the High Strength Concrete (HSC) the more brittle behavior which leads to sudden failure makes it important for proper understanding of its behaviour and safe and efficient estimation of capacities. Research on the behavior of HSC has been extensively carried out since last decade. High strength concrete has higher tensile strength hence a higher cracking shear can be expected. This paper analyses the different international standards available for estimating concrete’s component of shear strength for RCC beam. Different important factors mainly strength in compression, steel reinforcement (dowel action), ratio of shear span and depth, size effect i.e. depth along with the aggregate type (density of concrete) contributing to shear stress (Tc) of concrete has been also analyzed and thereafter, an equation has been proposed to compute or predict Tc value for concrete of both normal and higher grade or strength. The proposed equation has been validated by experimental results wherein 12 RCC beams (with and without reinforcement for shear) were cast and tested to fail in shear. The experimental results validated the proposed equation with considerable factor of safety keeping in view the sudden and brittle nature of failure in concrete in case of shear.


2021 ◽  
Vol 7 (2) ◽  
pp. 46-55
Author(s):  
Brijesh Singh ◽  
◽  
P N Ojha ◽  
Vikas Patel ◽  
Amit Trivedi ◽  
...  

With many benefits of the high strength concrete (HSC) the more brittle behaviour that leads to sudden failure makes it important for proper understanding of its behaviour and safe and efficient estimation of capacities. Research on the behaviour of HSC has been extensively carried out since last decade. HSC has higher tensile strength hence a higher cracking shear can be expected. This paper analyzes the different international standards available for estimating concrete’s component of shear strength for reinforced cement concrete (RCC) beam. Different important factors mainly strength in compression, steel reinforcement (dowel action), ratio of shear span and depth, size effect i.e. depth along with the aggregate type (density of concrete) contributing to shear stress (Tc) of concrete has been also analyzed and thereafter, an equation has been proposed to compute or predict Tc value for concrete of both normal and higher grade or strength. The proposed equation has been validated by experimental results wherein 12 RCC beams (with and without reinforcement for shear) were cast and tested to fail in shear. The experimental results validated the proposed equation with considerable factor of safety keeping in view the sudden and brittle nature of failure in concrete in case of shear.


2021 ◽  
Vol 7 (2) ◽  
pp. 63-73
Author(s):  
Niken Chatarina ◽  

The relationship between surrounding temperature and deformation behaviour of one full scale concrete plate with compressive strength of 60 MPa was presented in this paper. This research was done in Indonesia. Indonesia presents humid tropical weather. A specimen measuring 3.00m × 1.60m × 0.15m was used. Deformation was obtained by using four embedded vibrating wire strain gauges. The range observation is held between 7 to 28 days. The peaks of deformation follow peaks of surrounding temperature. Some deformation peaks time occur after surrounding temperature peak time, it is called as delay time. As a result, there is a linear relationship between temperature and deformation. The relationship was influenced by a factor which presented its position and delay time. The average error of this model is less than 15% at the age range of 7 until 14 days, and less than 50% at the age range of 15 - 28 days.


2021 ◽  
Vol 7 (2) ◽  
pp. 33-55
Author(s):  
Shuai Zou ◽  
◽  
Xiao-Nao Zuo ◽  
Xinagnan Li ◽  
Jianzhuang Xiao ◽  
...  

series of corrosion experiments of cement paste-steel bar specimens with different contents of slag and fly ash were performed to investigate the influence of slag/fly ash on the corrosion behavior of steel bars in concrete under seawater. In this investigation, the corrosion behavior of specimen was electrochemically monitored by open-circuit potential (OCP), Tafel polarization (TP) and electrochemical impedance spectra (EIS). Meanwhile, SEM/EDS and XRD were applied to microscopically analyze the microstructure deterioration of materials. Results showed that, replacing cement with slag/fly ash caused a decrease in Ca(OH)2 as well as an increase in C-S-H gel and Friedel's salt in concrete, which can improve the chloride-solidification ability and slow down the chloride diffusion in concrete by both physical adsorption and chemical binding, and thereafter promoting the corrosion resistance of steel bars in concrete in marine environment. Compared to slag, the equal replacing content of fly ash can contribute to a better improving effect on the corrosion resistance of reinforced concrete in marine environment. In this study, a replacement of cement by 20% slag+20% fly ash led to an optimum improving effect on its corrosion resistance. In addition, the results also indicate that the corrosion of reinforced concrete caused by seawater attack does not occur at a uniform rate, but it can firstly maintain a long-term uncorroded state, and then develops rapidly after pitting corrosion occurs.


2021 ◽  
Vol 7 (1) ◽  
pp. 24-37
Author(s):  
Arup Ghatak ◽  
P N Ojha ◽  
Brijesh Singh ◽  
Abhishek Singh ◽  
TVG Reddy ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 12-23
Author(s):  
Mohit Kumar Sharma ◽  
Saha Dauji ◽  
Pankaj Kumar Srivastava ◽  
Kapilesh Bhargava
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document