fiber reinforced polymer
Recently Published Documents





2022 ◽  
pp. 136943322110606
Xue Li ◽  
Lian-guang Wang ◽  
Hai-yang Gao ◽  
Ni Zhang

Splicing glass fiber–reinforced polymer (GFRP)-concrete–steel double-skin tubular column (DSTC) is to set connection component at the joint of two or more separated GFRP tubes, and then pour concrete in the double-tube interlayer to form a continuous composite member. In this paper, the splicing DSTC composite members based on steel bar connection were designed and tested under axial compression to determine its mechanical performance. The main parameters include the connection steel ratio, the hollow ratio, and the thickness of GFRP tube. The results show that the GFRP tube presents apparent constraint effect on the concrete at about 60% of the ultimate load. The failure of splicing specimen occurred in the non-splicing section at a certain distance from the splice joint, and the stirrups at the splice joint provide effective constraint effect on the internal concrete. The proposed DSTC splicing method based on steel cage connection can satisfy the strength requirements of splice joint. Nevertheless, the increase of axial steel bar ratio cannot improve the bearing capacity of the splicing column, and the steel ratio of 2.44% is suggested for the splice joint of DSTCs under axial compression. The axial bearing capacity of splicing DSTCs significantly increases with the increase of GFRP tube thickness, but the amount of stirrups should be increased properly when a larger tube thickness is used. Two models were selected to calculate the bearing capacity of splicing members and it is found that Yu’s model is more accurate in predicting splicing DSTCs.

2022 ◽  
pp. 136943322110651
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.

2022 ◽  
Vol 8 ◽  
Yue Liu ◽  
Jia-Zhan Xie ◽  
Jing-Liang Yan

Fiber-reinforced polymer (FRP) has been widely used in civil engineering due to its light weight, high strength, convenient construction, and strong corrosion resistance. One of the important applications of FRP composites is the concrete-filled FRP tube (CFFT), which can greatly improve the compressive strength and ductility of concrete as well as facilitate construction. In this article, the compressive performances of a normal concrete-filled FRP tube (N-CFFT) column with 5-hour curing time and an ultra-early strength concrete-filled FRP tube (UES–CFFT) column with zero curing time were studied by considering the characteristics of rapid early strength improvement of ultra-early strength concrete and the confinement effect of the FRP tube. Monotonic axial compression tests were carried out on 3 empty FRP tubes (FTs) without an internal filler and 6 CFFT (3 N-CFFTs and 3 UES-CFFTs) specimens. All specimens were cylinders of 200 mm in diameter and 600 mm in height, confined by glass fiber–reinforced polymer (GFRP). Test results indicated that the compressive bearing capacity of the specimens increased significantly by adopting the ultra-early strength concrete as the core concrete of the CFFT, although the curing time was zero. It was also shown that the compressive behavior of the UES–CFFT specimens with zero curing time increased significantly than that of the N-CFFT specimens with 5-hour curing time because the former was able to achieve rapid strength enhancement in a very short time than the latter. The ultimate compressive strength of UES–CFFT specimens with zero curing time reached 78.3 MPa, which was 66.2 and 97.2% higher than that of N-CFFT with 5-hour curing time and FT specimens, respectively. In addition, a simple confinement model to predict the strength of UES–CFFT with zero curing time in ultimate condition was introduced. Compared with the existing models, the proposed model could predict the ultimate strength of UES–CFFT specimens with zero curing time with better accuracy.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 535
Jianqin Wu ◽  
Jiannan Zhou ◽  
Ying Xu ◽  
Xinli Kong ◽  
Peng Wang ◽  

This paper proposes a prefabricated basalt fiber reinforced polymer (BFRP) bars reinforcement of a concrete arch structure with superior performance in the field of protection engineering. To study the anti-blast performance of the shallow-buried BFRP bars concrete arch (BBCA), a multi-parameter comparative analysis was conducted employing the LS-DYNA numerical method, which was verified by the results of the field explosion experiments. By analyzing the pressure, displacement, acceleration of the arch, and the strain of the BFRP bars, the dynamic response of the arch was obtained. This study showed that BFRP bars could significantly optimize the dynamic responses of blast-loaded concrete arches. The damage of exploded BBCA was divided into five levels: no damage, slight damage, obvious damage, severe damage, and collapse. BFRP bars could effectively mitigate the degree of damage of shallow-buried underground protective arch structures under the explosive loads. According to the research results, it was feasible for BFRP bars to be used in the construction of shallow buried concrete protective arch structures, especially in the coastal environments.

D.G. Puttaraju D G

In this century, composites have been discovered to be the most promising and discriminating material accessible. Composites reinforced with synthetic or natural fibres are becoming more popular as demand for light weight, high strength materials for specialized applications grows are on the rise in the market. In the current work Carbon fiber Reinforced Polymer Matrix Composite material is developed aiming wind turbine blade applications. This research demonstrates the successful development of a carbon fibre reinforced Epoxy matrix composite that can be utilized to make micro wind turbine blades and is very cost effective thanks to the utilization of a simple hand lay-up approach. The peak elongation varies from 12.248 mm to 14.417 mm, and the tensile strength varies from 939.472 N/mm2 to 960.910 N/mm2. It was observed that the Compressive Strength varies from 8.992 N/mm2 to 46.895 N/ mm2 and peak elongation varies from 1.808 mm to 3.462 mm. In three-point bending test, the peak load was found to be 509.96 N. Due to the presence of carbon fibre reinforcement, the bending strength of polyester resin has been greatly increased.

2022 ◽  
Vol 8 ◽  
Minjuan He ◽  
Yuxuan Wang ◽  
Zheng Li ◽  
Lina Zhou ◽  
Yichang Tong ◽  

The fiber-reinforced polymer is one kind of composite material made of synthetic fiber and resin, which has attracted research interests for the reinforcement of timber elements. In this study, 18 glued-laminated (glulam) beams, unreinforced or reinforced with internally embedded carbon fiber–reinforced polymer (CFRP) sheets, were tested under four-point bending loads. For the reinforced glulam beams, the influences of the strengthening ratio, the modulus of elasticity of the CFRP, and the CFRP arrangement on their bending performance were experimentally investigated. Subsequently, a finite element model developed was verified with the experimental results; furthermore, a general theoretical model considering the typical tensile failure mode was employed to predict the bending–resisting capacities of the reinforced glulam beams. It is found that the reinforced glulam beams are featured with relatively ductile bending failure, compared to the brittle tensile failure of the unreinforced ones. Besides, the compressive properties of the uppermost grain of the glulam can be fully utilized in the CFRP-reinforced beams. For the beams with a 0.040% strengthening ratio, the bending–resisting capacity and the maximum deflection can be enhanced approximately by 6.51 and 12.02%, respectively. The difference between the experimental results and the numerical results and that between the experimental results and analytical results are within 20 and 10%, respectively.

Sign in / Sign up

Export Citation Format

Share Document