A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications

2020 ◽  
Vol 251 ◽  
pp. 112571 ◽  
Author(s):  
Yongha Kim ◽  
Jungsun Park
2021 ◽  
Author(s):  
P. G. Vivek ◽  
Ankuran Saha ◽  
Apurba Das ◽  
Kazuaki Inaba ◽  
Amit Karmakar

Abstract Composites are favored over other traditional materials in many aerospace applications because of their high stiffness and strength-to-weight ratio. Taylor made material properties can be achieved by scheming the structural parameters making the material light, high strength and durable. Present work deals with a novel approach to enhance the strength of a layered delaminated composite beam using roller clamps to improve stiffness by providing uniform transverse force. Composite beam stiffness significantly degrades due to adverse environmental condition, impact loading and delamination effect. Composite structures are prone to delamination during its life span. Therefore in depth knowledge is needed to find the effect of roller clamps on the dynamic behavior of beam with varying delamination sizes. Present approach will be useful to enhance the stiffness of composite structure with delamination. The free vibration of a clamped cantilever beam is investigated, and the results are compared to those of an unclamped and undelaminated beam. The findings are supported by experimentally obtained responses (modal analysis). Furthermore, the complex activity of the laminated structure is numerically computed and the obtained data is compared to those available in open literature to ensure correctness. The laminated composite beam’s static and free vibration responses are calculated using finite element simulation software (ANSYS).


2016 ◽  
Vol 1 (1) ◽  
pp. 190 ◽  
Author(s):  
H. Zhang ◽  
D.Y. Shi ◽  
Q.S. Wang

<p>An improved Fourier series method is presented for the free vibration analysis of the moderately thick laminated composite rectangular plate with general elastic supports and point supports resting on an elastic foundation. The approach is based on the first order shear deformation theory and foundation effect using two-parameter Pasternak foundation model. The displacement and rotation functions are generally sought, regardless of boundary conditions, as Fourier series and supplementary functions. All the series expansion coefficients are determined using the Rayleigh-Ritz technique. The excellent accuracy of the current results is validated by comparing them with existing results.</p>


Sign in / Sign up

Export Citation Format

Share Document