Properties of coal ash foamed brick stabilised with hydrated lime-activated ground granulated blastfurnace slag

2020 ◽  
Vol 235 ◽  
pp. 117568 ◽  
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin
2013 ◽  
Vol 594-595 ◽  
pp. 527-531
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin ◽  
Ahmad Faiz Abdul Rashid

Millions tons of coal ash which constitute of fly ash and bottom ash were produced annually throughout the world. They were significant to be developed as masonry brick to substitute the existing widely used traditional material such as clay and sand brick which were produced from depleting and dwindling natural resources. In the present study, the coal ash from coal-fired thermal power plant was used as the main raw material for the fabrication of cementless unfired lightweight brick. The binder comprising of Hydrated Lime (HL)-activated Ground Granulated Blastfurnace Slag (GGBS) system at binding ratio 30:70, 50:50 and 70:30 were used to stabilize the coal ash in the fabrication process of the brick. Foam was used to lightweight the brick. The compressive strength and ambient density were evaluated on the brick. The results indicated that the brick incorporating HL-GGBS system achieved higher strength of 20.84N/mm2 at 28 days compare to the HL system with strength of 13.98N/mm2 at 28 days. However, as the quantity of foam increase at 0%, 25%, 50%, 75% and 100%, the strength and density for the brick decreased.


2016 ◽  
Vol 53 (5) ◽  
pp. 773-782 ◽  
Author(s):  
Yaolin Yi ◽  
Martin Liska ◽  
Fei Jin ◽  
Abir Al-Tabbaa

Reactive magnesia (MgO)-activated ground granulated blastfurnace slag (GGBS), with fixed GGBS dosages but varying MgO/GGBS ratios, was used for stabilization of two soils and compared with brucite (Mg(OH)2)-activated GGBS and hydrated lime (Ca(OH)2)-activated GGBS. A range of tests, including unconfined compressive strength testing, X-ray diffraction, and scanning electron microscopy, was conducted to study the mechanical, chemical, and microstructural properties of the stabilized soils, and then to investigate the mechanism of MgO–GGBS soil stabilization. Results indicate that the Mg(OH)2 had a minimal activating efficacy for GGBS-stabilized soil, while the reactive MgO yielded a higher activating efficacy than the Ca(OH)2. The activator–soil reactions in the stabilized soil slowed down the activating reaction rate for GGBS; this effect was less significant in MgO–GGBS-stabilized soil than in Ca(OH)2–GGBS-stabilized soil, and hence the GGBS hydration rate in the former was less reduced by the soil than the latter. The Mg2+ and OH− ions produced from MgO dissolution participated in the GGBS hydration reactions without precipitating Mg(OH)2. The common hydration products in all GGBS-stabilized soils were calcium silicate hydrate–like compounds. Additionally, hydrotalcite and calcite could be produced in MgO–GGBS- and Ca(OH)2–GGBS-stabilized soils, respectively, especially with a high activator/GGBS ratio.


Sign in / Sign up

Export Citation Format

Share Document