Applicability of 2360 MPa grade prestressing steel strand: Performance of material, bond, and anchorage system

2021 ◽  
Vol 266 ◽  
pp. 120941
Author(s):  
Jun-Mo Yang ◽  
Jin-Young Jung ◽  
Jin-Kook Kim
1998 ◽  
Vol 25 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Ezzeldin Y Sayed-Ahmed ◽  
Nigel G Shrive

During the past half century, the use of prestressing in different structures has increased tremendously. One of the most important techniques of prestressing is post-tensioning. The main problem associated with post-tensioning in different structures is the corrosion of the prestressing steel tendons even with well-protected steel. New materials, fibre reinforced plastics or polymers (FRP), which are more durable than steel, can be used for these tendons/strands and thus overcome the corrosion problem. However, different shortcomings appear when FRP tendons are introduced to post-tensioning prestressing applications. For carbon fibre plastic tendons (CFRP), there is no suitable anchorage system for post-tensioning applications. Some of the anchorages developed by others for use with FRPs are therefore described and assessed. A new anchorage system developed by the authors, which can be used with bonded or unbonded CFRP tendons in post-tensioning applications, is described. The results of direct tension and fatigue tests on CFRPs anchored with the new system are presented.Key words: anchorage system, cyclic loading, fatigue, fibre reinforced plastics, finite element analysis, post-tension, prestressed concrete, prestressed masonry, strands, tendons.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4018 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Liuyu Zhang ◽  
Laijun Liu ◽  
Linsheng Huo

Steel strands are widely used in cable stay or suspension bridges. The safety and stability of steel strands are important issues during their operation period. Steel strand is subjected to various types of prestress loss which loosens the wedge anchorage system, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a time reversal (TR) method to monitor the looseness status of the wedge anchorage system by using stress wave based active sensing. As a commonly used piezoceramic material, Lead Zirconate Titanate (PZT) with a strong piezoelectric effect is employed. In the proposed active sensing approach, PZT patches are used as sensors and actuators to monitor the steel strand looseness status. One PZT patch is bonded to the steel strand, one PZT patch is bonded to the wedges, and another PZT patch is bonded to the barrel. There are three different interfaces of the wedge anchorage system to monitor the steel strand looseness status. In the first method, the PZT patch on the steel strand is used as an actuator to generate a stress wave and the PZT patch on the wedge is used as a sensor to detect the propagated waves through the wedge anchorage system. In the second method, the PZT patch on the steel strand is used as an actuator to generate a stress wave and the PZT patch on the barrel is used as a sensor to detect the propagated waves through the wedge anchorage system. In the third method, the PZT patch on the wedges is used as an actuator to generate a stress wave and the PZT patches on the barrel is used as a sensor to detect the propagated waves through the wedge anchorage system, of which the looseness will directly impact the stress wave propagation. The TR method is utilized to analyze the transmitted signal between PZT patches through the wedge anchorage system. Compared with the peak values of the TR focused signals, it can be found that the peak value increases as the wedge anchorage system tightness increases. Therefore, the peak value of the TR focused signal can be used to monitor the tightness of the steel strand. In addition, the experimental results demonstrated the time reversal method’s reliability, sensitivity and anti-noise property.


2019 ◽  
Vol 8 (2) ◽  
pp. 2450-2460 ◽  
Author(s):  
Chi-Ho Jeon ◽  
Jae-Bin Lee ◽  
Sokanya Lon ◽  
Chang-Su Shim

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 364
Author(s):  
Xiaoyu Zhang ◽  
Liuyu Zhang ◽  
Laijun Liu ◽  
Linsheng Huo

A steel strand is widely used in long span prestressed concrete bridges. The safety and stability of a steel strand are important issues during its operation period. A steel strand is usually subjected to various types of prestress loss which loosens the anchorage system, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a wavelet packet analysis method to monitor the looseness of the wedge anchorage system by using stress wave-based active sensing. As a commonly used piezoceramic material, lead zirconate titanate (PZT) is employed with a strong piezoelectric effect. In the proposed active sensing approach, PZT patches are used as sensors and actuators to monitor the steel strand looseness. The anchorage system consists of the steel strand, wedges and barrel, which forms two different direct contact surfaces to monitor the tension force. PZT patches are pasted on the surface of each steel strand, corresponding wedge and barrel, respectively. Different combinations of PZTs are formed to monitor the anchoring state of the steel strand according to the position of the PZT patches. In this monitoring method of two contact surfaces, one PZT patch is used as an actuator to generate a stress wave and the other corresponding PZT patch is used as a sensor to detect the propagated waves through the wedge anchorage system. The function of these two PZTs were exchanged with the changing of transmission direction. The wavelet packet analysis method is utilized to analyze the transmitted signal between PZT patches through the steel strand anchorage system. Compared with the wavelet packet energy of received signals under different PZT combinations, it could be found that the wavelet packet energy increased with the increasing of anchorage system tightness. Therefore, the wavelet packet energy of received signal could be used to monitor the tightness of the steel strand during operation. Additionally, the wavelet packet energy of the received signals are different when the same PZT combination exchanges the energy transfer direction. With the comparison on the received signals of different combinations of PZTs, the optimal energy transfer path corresponding to different contact surfaces of the steel strand could be determined and the optimal experimental results are achieved.


Sign in / Sign up

Export Citation Format

Share Document