direct tension
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 78)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Behzad Isazadeh-Khiav ◽  
Tohid Akhlaghi ◽  
Masoud Hajialilue-Bonab

The main goal of this research is to study the failure behavior of cement-fiber-treated sand under triaxial direct tension condition tests. Thus, a new loading system and triaxial cell was designed and built for tensile loading. Samples were prepared with content cement of 3 and 5% (dry wt.) of the sand, while two types of polypropylene fibers 0.024 m in length and 23 μm and 300 μm thick were added at 0.0% and 0.5% (dry wt.) of the sand and cement mixture. After a seven-day curing period, the samples were loaded under triaxial direct tension tests under confining pressures of 100, 200, and 300 kpa in drained conditions. Stress-strain behavior, changes in volume and energy absorbed by cement-fiber reinforced sand were measured and compared with the results of other studies. Adding fibers resulted in reduced peak deviatoric stress and increased residual deviatoric stresses of the cement-fiber reinforced sand, with changes from brittle to ductile behavior. The initial stiffness and stiffness at 50% maximum tensile stress of the samples is decreased with the addition of fibers and with an increase in fiber diameter, the reduction rate of this stiffness is more evident. The absorbed energy for fibers with a thickness of 23 μm is less than fibers with a thickness of 300 μm. The effect of adding fibers to strength parameters showed that the cohesion intercept decreases, while the internal friction angle increases.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. He ◽  
L. He ◽  
B. Guan ◽  
C. M. Yuan ◽  
J. Xie ◽  
...  

Insight into the difference between the mechanical properties of rocks at low and in situ deep reservoir temperatures is vital for achieving a better understanding of fracking technologies with supercritical CO2 and liquid nitrogen. To address this issue, the fracking-related mechanical properties of the Shaximiao Formation sandstone (SS) were investigated through direct tension, uniaxial compression, and three-point bending fracture tests at a typical low temperature (Tlow) of −10°C and a reservoir temperature (Tin situ) of 70°C. The results showed that the tensile strength σt, compressive strength σc, and fracture toughness KIC of the SS were all higher at Tlow than at Tin situ, although to different extents. The KIC of the SS increased slightly more than σt at the lower temperature, while both σt and KIC of the SS increased significantly more than σc at the lower temperature. In addition to the strength, the stiffness (particularly the tensile stiffness) and the brittleness indices of SS were similarly higher at Tlow than at Tin situ. In situ monitoring using the digital image correlation technique revealed that a highly strained band (HSB) always appeared at the crack front. However, because of the inhomogeneous microstructure of the SS, the HSB did not always develop along the line connecting the notch tip to the loading point. This was a possible cause of the highly dispersed KIC values of the SS. The HSB at the crack front was notably narrower at Tlow than at Tin situ, suggesting that low temperatures suppress the plastic deformation of rocks and are therefore beneficial to reservoir stimulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jie Liu ◽  
Gangyuan Jiang ◽  
Taoying Liu ◽  
Qiao Liang

To investigate different responses of direct and indirect tensile strengths to loading rate, direct and indirect tension tests were performed on sandstone, rust stone, and granite specimens. Typical load curves indicate that a peak tensile stress frequently appears before the second peak stress, used to calculate the tensile strength in indirect tension tests. As expected, increase in the loading rate increases the tensile strength. In addition, the calculated tensile strengths of the indirect tension tests are frequently higher. Interestingly, the increase ratio of the tensile strength with the increase in the loading rate in indirect tension tests is higher. To verify the above results, crack propagation and stress evolution in direct and indirect tension tests were dynamically monitored using PFC 3D. For direct tension tests, specimens fail at the peak tension point, corresponding to the tensile strength. However, for indirect tension tests, minor cracks, composing of continuous microcracks, form before the peak stress and accompany with the decreased slope of the compression curve. At the peak point, tensile stresses significantly concentrate at the crack tips and further cause large-scale crack propagation. In addition, the initiation stress instead of the peak tensile stress is closer to the tensile strength, obtained from the direct tests for the same loading rate.


Author(s):  
Donguk Choi ◽  
Sorrasak Vachirapanyakun ◽  
Munckhtuvshin Ochirbud ◽  
Undram Naidangjav ◽  
Sangsu Ha ◽  
...  

AbstractResults of an experimental study aimed to evaluate tensile performance, lap-splice length of carbon fabric-reinforced cementitious matrix system (C-FRCM), and performance of concretes confined by C-FRCM are presented. Green high-strength mortar was used in this study which actively utilized recycled fine aggregate and fine waste glass powder to partially substitute cementitious binder. Test plans were developed in due consideration of prefabricated C-FRCM for strengthening concrete columns: 14 tensile tests, 12 lap-splice tests, and 6 uniaxial compression tests of plain concrete specimens confined by C-FRCM were performed. Test variable for the tensile test was number of fabric layers (one or two layers). Nominal strength of the C-FRCM with two fabric layers was 11.0 MPa while it was 7.4 MPa with one fabric layer in tension. Full strength of the carbon fabric was developed in all tensile tests while the C-FRCM with two fabric layers (with axial fiber amount = 0.59% by vol.) showed pseudo-ductile behavior. From the lap-splice tests in direct tension, an increased lap-splice length was required for the double fabrics over that for the single fabrics. The required splice length was about 170 mm for the single fabrics and it was about 310 mm for the double fabrics. Plain concrete cylinders and prismatic specimens were laterally confined by C-FRCM and subjected to uniaxial compression. All test results showed strain-softening behavior. Compressive strength increased by 10–41% while ductility also increased by 6–45% indicating applicability of the prefabricated type C-FRCM in the future.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5714
Author(s):  
Andreas Lampropoulos ◽  
Demetris Nicolaides ◽  
Spyridon Paschalis ◽  
Ourania Tsioulou

In the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applications, reliable numerical models need to be developed. In the case of UHPFRC, it is common practice to perform either direct tensile or flexural tests to determine the UHPFRC tensile stress–strain models. However, the geometry of the specimens used for the material characterization is, in most cases, significantly different to the geometry of the layers used in strengthening applications which are normally of quite small thickness. Therefore, and since the material properties of UHPFRC are highly dependent on the dimensions of the examined specimens, the so called “size effect” needs to be considered for the development of an improved modelling approach. In this study, direct tensile tests have been used and a constitutive model for the tensile behaviour of UHPFRC is proposed, taking into consideration the size of the finite elements. The efficiency and reliability of the proposed approach has been validated using experimental data on prisms with different geometries, tested in flexure and in direct tension.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5098
Author(s):  
Anna L. Mina ◽  
Konstantinos G. Trezos ◽  
Michael F. Petrou

This study describes an extensive experimental investigation of various mechanical properties of Ultra-High-Performance Fibre-Reinforced Concrete (UHPFRC). The scope is to achieve high strength and ductile behaviour, hence providing optimal resistance to projectile impact. Eight different mixtures were produced and tested, three mixtures of Ultra-High-Performance Concrete (UHPC) and five mixtures of UHPFRC, by changing the amount and length of the steel fibres, the quantity of the superplasticizer, and the water to binder (w/b) ratio. Full stress–strain curves from compression, direct tension, and flexural tests were obtained from one batch of each mixture to examine the influence of the above parameters on the mechanical properties. The Poisson’s ratio and modulus of elasticity in compression and direct tension were measured. Additionally, a factor was determined to convert the cubic strength to cylindrical. Based on the test results, the mixture with high volume (6%) and a combination of two lengths of steel fibres (3% each), water to binder ratio of 0.16% and 6.1% of superplasticizer to binder ratio exhibited the highest strength and presented great deformability in the plastic region. A numerical simulation developed using ABAQUS was capable of capturing very well the experimental three-point bending response of the UHPFRC best-performed mixture.


Sign in / Sign up

Export Citation Format

Share Document