First-order symplectic Euler method for ground penetrating radar forward simulations in dispersive medium

2021 ◽  
Vol 299 ◽  
pp. 123904
Author(s):  
Man Yang ◽  
Hongyuan Fang ◽  
Fuming Wang ◽  
Yuke Wang ◽  
Xueming Du ◽  
...  
Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. J7-J16 ◽  
Author(s):  
John H. Bradford

In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent [Formula: see text] parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited [Formula: see text] function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing [Formula: see text] from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order [Formula: see text] approximation and [Formula: see text] computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and [Formula: see text], a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure [Formula: see text] from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


PIERS Online ◽  
2006 ◽  
Vol 2 (6) ◽  
pp. 567-572
Author(s):  
Hui Zhou ◽  
Dongling Qiu ◽  
Takashi Takenaka

Sign in / Sign up

Export Citation Format

Share Document