A backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads

2017 ◽  
Vol 58 ◽  
pp. 150-160 ◽  
Author(s):  
Nima Mahdian Dehkordi ◽  
Nasser Sadati ◽  
Mohsen Hamzeh
Author(s):  
Yuchen Dai ◽  
Liyan Zhang ◽  
Guofu Liu ◽  
Dezhi Xu ◽  
Chengshun Yang

Based on vehicle-to-grid technology, electric vehicles can be used as power sources in the case of power failure. With the aim to reduce voltage overshoot and improve the anti-disturbance ability of the vehicle-to-grid inverter, a high-performance voltage control strategy based on funnel control and finite-time disturbance observer is developed. First, the dynamic model of the inverter in dq-frame is established, and the lumped disturbance including the unmodeled part is considered. Next, a novel funnel variable is proposed to ensure that the voltage tracking error can be stabilized within the prescribed funnel boundary, and thus enhance the transient performance. Then, a novel finite-time disturbance observer is designed to estimate the lumped disturbance in the system such as load fluctuations, and improve the anti-disturbance ability of the controller. Moreover, the second-order sliding mode differentiator is introduced to estimate the derivative of the virtual control law and eliminate the explosion of complexity problem in the derivation process. Finally, the finite-time stability of the proposed voltage control strategy is analyzed via the Lyapunov theory. The effectiveness of the proposed control strategy is verified by two cases.


Author(s):  
Feng Zhang ◽  
Xiaolong Guo ◽  
Xiqiang Chang ◽  
Guowei Fan ◽  
Lianger Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document