Finite-time disturbance observer–based funnel voltage control strategy for vehicle-to-grid inverter in islanded mode

Author(s):  
Yuchen Dai ◽  
Liyan Zhang ◽  
Guofu Liu ◽  
Dezhi Xu ◽  
Chengshun Yang

Based on vehicle-to-grid technology, electric vehicles can be used as power sources in the case of power failure. With the aim to reduce voltage overshoot and improve the anti-disturbance ability of the vehicle-to-grid inverter, a high-performance voltage control strategy based on funnel control and finite-time disturbance observer is developed. First, the dynamic model of the inverter in dq-frame is established, and the lumped disturbance including the unmodeled part is considered. Next, a novel funnel variable is proposed to ensure that the voltage tracking error can be stabilized within the prescribed funnel boundary, and thus enhance the transient performance. Then, a novel finite-time disturbance observer is designed to estimate the lumped disturbance in the system such as load fluctuations, and improve the anti-disturbance ability of the controller. Moreover, the second-order sliding mode differentiator is introduced to estimate the derivative of the virtual control law and eliminate the explosion of complexity problem in the derivation process. Finally, the finite-time stability of the proposed voltage control strategy is analyzed via the Lyapunov theory. The effectiveness of the proposed control strategy is verified by two cases.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xing Fang ◽  
Fei Liu

A novel full-order terminal sliding-mode controller (FOTSMC) based on the finite-time disturbance observer (FTDO) is proposed for the “JIAOLONG” manned submersible with lumped disturbances. First, a finite-time disturbance observer (FTDO) is developed to estimate the lumped disturbances including the external disturbances and model uncertainties. Second, a full-order terminal sliding-mode surface is designed for the manned submersible, whose sliding-mode motion behaves as full-order dynamics rather than reduced-order dynamics in conventional sliding-mode control systems. Then, a continuous sliding-mode control law is developed to avoid chattering phenomenon, as well as to drive the system outputs to the desired reference trajectory in finite time. Furthermore, the closed-loop system stability analysis is given by Lyapunov theory. Finally, the simulation results demonstrate the satisfactory tracking performance and excellent disturbance rejection capability of the proposed finite-time disturbance observer based full-order terminal sliding-mode control (FTDO-FOTSMC) method.


2018 ◽  
Vol 41 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
Lu Liu ◽  
Shihong Ding ◽  
Li Ma ◽  
Haibin Sun

In this paper, a novel discontinuous second-order sliding mode control approach has been developed to handle sliding mode dynamics with a nonvanishing mismatched disturbance by using Lyapunov theory and a finite-time disturbance observer. Firstly, the finite-time disturbance observer is designed to estimate the nonvanishing mismatched disturbance. Secondly, a virtual controller has been constructed based on the estimated value such that the sliding variable can be stabilized to zero in a finite time. Then, the real discontinuous controller is designed to guarantee that the virtual controller can be well tracked in a finite time. Lyapunov analysis also verifies the finite-time stability of the closed-loop sliding mode control system. The developed discontinuous second-order sliding mode control method possesses two appealing features including strong robustness with respect to the matched and mismatched nonvanishing disturbances, and relaxation on the constant upper bound of uncertainties widely used in a conventional second-order sliding mode. Finally, an academic example is illustrated to verify the effectiveness of the proposed method.


Author(s):  
Ali Mallem ◽  
Noureddine Slimane ◽  
Walid Benaziza

<p class="Abstract">This paper mainly In this paper a dynamic control of mobile robot using RBF global fast sliding mode (RBF-GFSM) strategy is presented. Firstly a GFSM controller is used in order to make the linear and angular velocities converge to references ones in finite time. However a problem of instability of velocities is appeared by introducing disturbances in the system. Secondly, a combined controller using RBF-GFSM approach is applied in aim to stabilize the velocities errors and estimates the nonlinear function of the robot model. The system stability is done using the lyapunov theory. The proposed controllers are dynamically simulated using Matlab/Simulink and the simulations results show the efficiency and robustness of the proposed control strategy.</p>


2021 ◽  
Vol 9 (3) ◽  
pp. 269
Author(s):  
Zengcheng Zhou ◽  
Guoyuan Tang ◽  
Ruikun Xu ◽  
Lijun Han ◽  
Maolin Cheng

In this paper, the tracking control problem of underwater robot manipulators is investigated under the influence of the lumped disturbances, including unknown ocean current disturbances and parameter uncertainties. The proposed novel continuous nonsingular finite–time (CNFT) control method is twofold. Firstly, the modified adaptive super–twisting algorithm (ASTA) is proposed with a nonsingular fast terminal sliding mode (NFTSM) manifold to guarantee the finite–time convergence both in the sliding mode phase and the reaching phase. Secondly, a higher–order super–twisting disturbance observer (HOSTDO) is exploited to attenuate the effects of the lumped disturbances. Considering the time–varying gain matrix of the closed–loop control system, the bounded stability is strictly proved via the Lyapunov theory. Hence, the superiority of the proposed controller is singularity–free, fast convergence, chattering–free, high steady–state tracking performance, and good robustness by resorting to the methods of CNFT control and ASTA in combination with a disturbance observer. Finally, numerical simulations are conducted on a two degree–of–freedom (DOF) underwater robot manipulator to demonstrate the effectiveness and high tracking performance of the designed controller.


Author(s):  
Yan Zhang ◽  
Jian Liu ◽  
Yuteng Zhang ◽  
Ying Zhou ◽  
Lingling Chen

This article proposes a new adaptive sliding mode repetitive learning control strategy. The proposed controller can obtain satisfactory position tracking performance in the presence of unknown dynamics and external disturbance. The unknown dynamics parameters of the exoskeleton system can be estimated via an adaptive algorithm, which is used to design the sliding mode control law. Besides, the periodic external disturbance of the system can be compensated by repetitive learning to reduce the tracking error. The stability of the proposed method is demonstrated rigorous by the Lyapunov theory. Using an upper-limb exoskeleton model, simulation results demonstrate the effectiveness of the control strategy. The proposed method has a better control performance than other methods.


Author(s):  
Bin Ren ◽  
Yao Wang ◽  
Jiayu Chen ◽  
Silu Chen

Abstract Robotic manipulators are complex and dynamic nonlinear mechanical systems subject to numerous uncertainties, such as payload variations, frictions, and unmodeled dynamics. To mitigate the uncertainty caused by these disturbances and minimize the tracking errors of the controllers, this study proposed a finite time tracking-based controller (FTC) that embeds a nonlinear disturbance observer (NDO) and a second-order sliding mode modifier (SOSM). The NDO was incorporated to compensate for the system's global bounded uncertainty and the SOSM employed a robust nonsingular terminal sliding-mode modifier to stabilize the controller. The theoretical analysis showed that the tracking error could quickly converge in finite time. Simulation on a typical robotics manipulator demonstrated the practical appeal of the proposed scheme.


2021 ◽  
Author(s):  
Zeyu Guo ◽  
Zuo Wang ◽  
Shihua Li

Abstract The performance of attitude stabilization control algorithms for rigid spacecraft can be limited by disturbances. In this paper, the global finite-time attitude stabilization problem with disturbances is investigated and handled by constructing a second-order sliding mode controller. Firstly, a virtual controller based on set stabilization idea is constructed to globally finite-time stabilize the system. Then, a relay polynomial second-order sliding mode controller is constructed to guarantee that the tracking error towards the virtual controller will converge to zero in finite-time. Finite-time Lyapunov theory is applied to support the proof and stability analysis. The global finite-time stability holds even with bounded disturbances. The effectiveness and feasibility of the controller are illustrated by the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document