Mitochondrial calcium handling and neurodegeneration: when a good signal goes wrong

2020 ◽  
Vol 17 ◽  
pp. 224-233 ◽  
Author(s):  
Riccardo Filadi ◽  
Paola Pizzo
2014 ◽  
Vol 20 (10) ◽  
pp. 1533-1547 ◽  
Author(s):  
Roman Uzhachenko ◽  
Sergey V. Ivanov ◽  
Wendell G. Yarbrough ◽  
Anil Shanker ◽  
Ruslan Medzhitov ◽  
...  

2016 ◽  
Vol 25 ◽  
pp. S53
Author(s):  
A. Ramalingam ◽  
N. Mohd. Fauzi ◽  
S. Budin ◽  
R. Ritchie ◽  
S. Zainalabidin

2020 ◽  
Author(s):  
Kristopher Burkewitz ◽  
Sneha Dutta ◽  
Charlotte A. Kelley ◽  
Michael Steinbaugh ◽  
Erin J. Cram ◽  
...  

AbstractFunctional crosstalk between organelles is critical for maintaining cellular homeostasis. Individually, dysfunction of both endoplasmic reticulum (ER) and mitochondria have been linked to cellular and organismal aging, but little is known about how mechanisms of inter-organelle communication might be targeted to extended longevity. The metazoan unfolded protein response (UPR) maintains ER health through a variety of mechanisms beyond its canonical role in proteostasis, including calcium storage and lipid metabolism. Here we provide evidence that in C. elegans, inhibition of the conserved UPR mediator, activating transcription factor (atf)-6 increases lifespan via modulation of calcium homeostasis and signaling to the mitochondria. Loss of atf-6 confers long life via downregulation of the ER calcium buffering protein, calreticulin. Function of the ER calcium release channel, the inositol triphosphate receptor (IP3R/itr-1), is required for atf-6 mutant longevity while a gain-of-function IP3R/itr-1 mutation is sufficient to extend lifespan. IP3R dysfunction leads to altered mitochondrial behavior and hyperfused morphology, which is sufficient to suppress long life in atf-6 mutants. Highlighting a novel and direct role for this inter-organelle coordination of calcium in longevity, the mitochondrial calcium import channel, mcu-1, is also required for atf-6 mutant longevity. Altogether this study reveals the importance of organellar coordination of calcium handling in determining the quality of aging, and highlights calcium homeostasis as a critical output for the UPR and atf-6 in particular.


Biochimie ◽  
2011 ◽  
Vol 93 (12) ◽  
pp. 2060-2067 ◽  
Author(s):  
Yves Gouriou ◽  
Nicolas Demaurex ◽  
Philippe Bijlenga ◽  
Umberto De Marchi

2016 ◽  
Vol 311 (6) ◽  
pp. C1005-C1013 ◽  
Author(s):  
Julieta Diaz-Juarez ◽  
Jorge Suarez ◽  
Federico Cividini ◽  
Brian T. Scott ◽  
Tanja Diemer ◽  
...  

Diabetic cardiomyopathy is associated with metabolic changes, including decreased glucose oxidation (Gox) and increased fatty acid oxidation (FAox), which result in cardiac energetic deficiency. Diabetic hyperglycemia is a pathophysiological mechanism that triggers multiple maladaptive phenomena. The mitochondrial Ca2+ uniporter (MCU) is the channel responsible for Ca2+ uptake in mitochondria, and free mitochondrial Ca2+ concentration ([Ca2+]m) regulates mitochondrial metabolism. Experiments with cardiac myocytes (CM) exposed to simulated hyperglycemia revealed reduced [Ca2+]m and MCU protein levels. Therefore, we investigated whether returning [Ca2+]m to normal levels in CM by MCU expression could lead to normalization of Gox and FAox with no detrimental effects. Mouse neonatal CM were exposed for 72 h to normal glucose [5.5 mM glucose + 19.5 mM mannitol (NG)], high glucose [25 mM glucose (HG)], or HG + adenoviral MCU expression. Gox and FAox, [Ca2+]m, MCU levels, pyruvate dehydrogenase (PDH) activity, oxidative stress, mitochondrial membrane potential, and apoptosis were assessed. [Ca2+]m and MCU protein levels were reduced after 72 h of HG. Gox was decreased and FAox was increased in HG, PDH activity was decreased, phosphorylated PDH levels were increased, and mitochondrial membrane potential was reduced. MCU expression returned these parameters toward NG levels. Moreover, increased oxidative stress and apoptosis were reduced in HG by MCU expression. We also observed reduced MCU protein levels and [Ca2+]m in hearts from type 1 diabetic mice. Thus we conclude that HG-induced metabolic alterations can be reversed by restoration of MCU levels, resulting in return of [Ca2+]m to normal levels.


Sign in / Sign up

Export Citation Format

Share Document