mutant huntingtin
Recently Published Documents


TOTAL DOCUMENTS

766
(FIVE YEARS 145)

H-INDEX

89
(FIVE YEARS 8)

2022 ◽  
Vol 15 ◽  
Author(s):  
Desmond Pink ◽  
Julien Donnelier ◽  
John D. Lewis ◽  
Janice E. A. Braun

Extracellular vesicles (EVs) are secreted vesicles of diverse size and cargo that are implicated in the cell-to-cell transmission of disease-causing-proteins in several neurodegenerative diseases. Mutant huntingtin, the disease-causing entity in Huntington’s disease, has an expanded polyglutamine track at the N terminus that causes the protein to misfold and form toxic intracellular aggregates. In Huntington’s disease, mutant huntingtin aggregates are transferred between cells by several routes. We have previously identified a cellular pathway that is responsible for the export of mutant huntingtin via extracellular vesicles. Identifying the EV sub-populations that carry misfolded huntingtin cargo is critical to understanding disease progression. In this work we expressed a form of polyglutamine expanded huntingtin (GFP-tagged 72Qhuntingtinexon1) in cells to assess the EVs involved in cellular export. We demonstrate that the molecular chaperone, cysteine string protein (CSPα; DnaJC5), facilitates export of disease-causing-polyglutamine-expanded huntingtin cargo in 180–240 nm vesicles as well as larger 10–30 μm vesicles.


Author(s):  
Devi Wahyuningtyas ◽  
Wen-Hao Chen ◽  
Ruei-Yu He ◽  
Yung-An Huang ◽  
Chia-Kang Tsao ◽  
...  

2021 ◽  
Author(s):  
D.K. Wilton ◽  
K. Mastro ◽  
M.D. Heller ◽  
F.W. Gergits ◽  
C R. Willing ◽  
...  

AbstractHuntington’s disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here, we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from HD patients that is associated with the increased activation and localization of complement proteins, innate immune molecules, to markers of these synaptic elements. We also find that levels of these secreted innate immune molecules are elevated in the CSF of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis marking them for removal by microglia, the brain’s resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons and inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function blocking antibody or genetic ablation of a complement receptor on microglia, prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD, and also provide new preclinical data to support complement as a therapeutic target for early intervention.


2021 ◽  
Author(s):  
Dalton Surmeier ◽  
Tristano Pancani ◽  
Michelle Day ◽  
Tatiana Tkatch ◽  
David Wokosin ◽  
...  

Abstract Huntington’s disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in the huntingtin gene. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology remain a matter of speculation. To help fill this gap, the zQ175+/- knockin mouse model of HD was studied using approaches that allowed optogenetic interrogation of intratelencephalic (IT) and pyramidal tract (PT) connections with principal striatal spiny projection neurons (SPNs). These studies revealed that the connectivity of IT, but not PT, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced inhibitory control of IT terminals by striatal cholinergic interneurons (ChIs). Lowering mutant huntingtin selectively in ChIs with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and IT functional connectivity – revealing a novel node in the network underlying corticostriatal pathophysiology in HD.


Life Sciences ◽  
2021 ◽  
Vol 285 ◽  
pp. 120009
Author(s):  
Brígida R. Pinho ◽  
Liliana M. Almeida ◽  
Michael R. Duchen ◽  
Jorge M.A. Oliveira

Author(s):  
Daniele Bertoglio ◽  
Jeroen Verhaeghe ◽  
Alan Miranda ◽  
Leonie Wyffels ◽  
Sigrid Stroobants ◽  
...  

Abstract Purpose As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington’s disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. Methods After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. Results Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. Conclusion With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258486
Author(s):  
Taneli Heikkinen ◽  
Timo Bragge ◽  
Juha Kuosmanen ◽  
Teija Parkkari ◽  
Sanna Gustafsson ◽  
...  

Huntington’s disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.


2021 ◽  
Author(s):  
Anna C Pfalzer ◽  
Yan Yan ◽  
Hakmook Kang ◽  
Melissa Totten ◽  
James Silverman ◽  
...  

Abstract Objective: The importance of metal biology in neurodegenerative diseases such as Huntingtin Disease is well documented with evidence of direct interactions between metals such as copper, zinc, iron and manganese and mutant Huntingtin pathobiology. To date, it is unclear whether these interactions are observed in humans, how this impacts other metals, and how mutant Huntington alters homeostatic mechanisms governing levels of copper, zinc, iron and manganese in cerebrospinal fluid and blood in HD patients.Methods: Plasma and cerebrospinal fluid from control, pre-manifest, manifest and late manifest HD participants were collected as part of HD-Clarity. Levels of cerebrospinal fluid and plasma copper, zinc, iron and manganese were measured as well as levels of mutant Huntingtin and neurofilament in a sub-set of cerebrospinal fluid samples.Results: We find that elevations in cerebrospinal fluid copper, manganese and zinc levels are altered early in disease prior to alterations in canonical biomarkers of HD although these changes are not present in plasma. We also evidence that CSF iron is elevated in manifest patients. The relationships between plasma and cerebrospinal fluid metal are altered based on disease stage.Interpretation: These findings demonstrate that there are alterations in metal biology selectively in the CSF which occur prior to changes in known canonical biomarkers of disease. Our work indicates that there are pathological changes related to alterations in metal biology in individuals without elevations in neurofilament and mutant Huntingtin.


Sign in / Sign up

Export Citation Format

Share Document