Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints

2020 ◽  
Vol 166 ◽  
pp. 108445
Author(s):  
Jianguo Li ◽  
Huan Li ◽  
Yu Liang ◽  
Pingli Liu ◽  
Lijun Yang ◽  
...  
2002 ◽  
Vol 43 (12) ◽  
pp. 3100-3104 ◽  
Author(s):  
Daisuke Kuroda ◽  
Sachiko Hiromoto ◽  
Takao Hanawa ◽  
Yasuyuki Katada

2011 ◽  
Vol 65 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Bore Jegdic ◽  
Ana Alil ◽  
Zlatan Milutinovic ◽  
Zoran Odanovic ◽  
Bojan Gligorijevic ◽  
...  

Sensitization degree of the austenitic stainless steel welded joints was investigated by electrochemical methods of the double loop electrochemical potentiokinetic reactivation (DL EPR) in H2SO4 + KSCN solution, and by the measurement of corrosion potential of the steel in the drop of the solution of HNO3 + FeCl3 + HCl. The welded joints were tested by X-ray radiographic method in order to check the presence of the weld defects. Grain size of the base metal and the welded joints were determined by optical microscopy. Good agreement between the results obtained by different electrochemical methods was obtained. Heat-affected zone (HAZ) of the austenitic stainless steel welded joints has shown significant degree of sensitization. The double loop electrochemical potentiokinetic method gave quantitative evidence about susceptibility of the stainless steel to intergranular corrosion.


Author(s):  
jianguo Li ◽  
Huan Li ◽  
Yu Liang ◽  
Pingli Liu ◽  
Lijun Yang

A multi-strand composite welding wire was applied to join high nitrogen austenitic stainless steel, and microstructures and mechanical properties were investigated. The electrical signals demonstrate that the welding process using a multi-strand composite welding wire is highly stable. The welded joints are composed of columnar austenite and dendritic ferrite and welded joints obtained under high heat input and cooling rate have a noticeable coarse-grained heat-affected zone and larger columnar austenite in weld seam. Compared with welded joints obtained under the high heat input and cooling rate, welded joints have the higher fractions of deformed grains, high angle grain boundaries, Schmid factor and the lower dislocation density under the low heat input and cooling rate, which indicate a lower tensile strength and higher yield strength. The rotated goss (GRD) orientation of a thin plate and the cube (C) orientation of a thick plate are obvious after welding, but the S orientation at 65° sections of Euler’s space is weak. The δ-ferrite was studied based on the primary ferrite solidification mode. It is observed that low heat input and high cooing rate result in the increasing of δ-ferrite and high dislocation density was obtained in grain boundaries of δ-ferrite. M23C6 precipitates due to low cooling rate and heat input in weld seam and deteriorates the elongation of welded joints. The engineering stress-strain curves also show the low elongation and tensile strength of welded joints under low heat input and cooling rate, which is mainly caused by the high fraction of δ-ferrite and the precipitation of M23C6.


Sign in / Sign up

Export Citation Format

Share Document