welding wire
Recently Published Documents


TOTAL DOCUMENTS

978
(FIVE YEARS 76)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


2021 ◽  
Vol 100 (12) ◽  
pp. 396-409
Author(s):  
ABDELBASET R. H. MIDAWI ◽  
◽  
ELLIOT BIRO ◽  
SRINATH KISTAMPALLY

Advanced high-strength steels (AHSS) such as complexphase (CP) and high-formability (HF) steel offer weightsaving advantages for automotive applications such as chassis and frame applications. To prevent material oxidation, materials are often galvanized to protect the substrate from corrosion. However, the weldability of coated AHSS becomes challenging due to the trapping of zinc in the weld molten pool, which could lead to weld defects such as porosity and liquid metal embrittlement cracks. This work focused on the weldability of AHSS (CP800 and 980HF) using the gas metal arc welding process. The roles of both galvanized iron coating and filler material on weld strength were investigated. The welds were performed using two different filler materials: a low-strength filler (ER70S-6) and a high-strength filler (ER100S-6) material. In addition, two different joint configurations were studied: lap joints and butt joints. The results showed that the butt joint had a higher strength compared to the lap joints. Furthermore, the strength of the butt joint overmatched the base material strength in all of the tested materials (both in galvanized and uncoated). In general, lap joint strength undermatched the base material strength, which was attributed to the rotation during tensile testing that induced unaccounted bending stress on the lap joint, while using a higherstrength welding wire improved the tensile strength material in the lap joint configuration. The hardness profiles in the 980HF steel also showed a significant hardness mismatch due to the formation of a fully martensitic microstructure in the heat-affected zone, which led to suppressing the deformation across the lap joint.


2021 ◽  
Vol 43 (5) ◽  
pp. 43-54
Author(s):  
V.V. Dolinenko ◽  
◽  
E.V. Shapovalov ◽  
V.A. Kolyada ◽  
T.G. Skuba ◽  
...  

A functional transformer with fuzzy logic is synthesized, which allows to get the estimations of weld beads height and width at the arbitrary values of entry parameters: wire feed speed and torch transverse oscillations amplitude. The influence of these input parameters on the base metal penetration and beads geometric parameters, welded using MIG/MAG process, were studied. Surfacing was performed by a robotic system with an arc power supply "Fronius TPS- 320i", which operated in the mode of arc process synergetic control. The formation of both individual beads and surfacing layers at different overlap coefficients has been studied. The arc surfacing process was realized in a mixture of protective gases (Ar+18%CO2) using a welding wire Св-08Г2С with a 1.0 mm diameter. Surfacing speed – 4 mm/s, frequency of welding torch oscillations – 1 Hz. The obtained experimental dependences of beads width and height, as well as the length of the welding pool can be used in both: creating of multi-pass MIG/MAG surfacing program for robotic restoration of critical purposes parts surfaces, and in preparing of FEM model of MIG/MAG surfacing.


Sign in / Sign up

Export Citation Format

Share Document